
Dr. Charles L. Suffel: Scholar, Teacher, Mentor, Friend

Daniel Gross
Nathan Kahl

Kristi Luttrell
John T. Saccoman

Department of Mathematics and Computer Science
Seton Hall University

South Orange, NJ 07079, U.S.A.

Abstract

Dr. Charles L. Suffel (1941-2021) was an infuential mathematics educator and scholar at Stevens
Institute of Technology for more than half a century. The Managing Editor of Networks for 20
years, Suffel’s reach extended far beyond the Stevens campus. He coauthored dozens of graph
theory papers and mentored more than a dozen Ph.D. theses. In this article, we discuss his
contributions to the field of network reliability theory and his legacy as a teacher and mentor.

1 Introduction

Our friend and mentor, Charlie Suffel, passed away in February of 2021. While no single article
can possibly do him justice, we will attempt to here. We represent the research group that Charlie
Suffel maintained for most of his time as a graph theorist; the group began at Stevens Institute of
Technology in Hoboken, New Jersey, where Suffel taught for more than 50 years. Suffel was the
Managing Editor of Networks from 1979 to 1999, and he and the late Frank Boesch (Editor-in-Chief
of Networks for more than 20 years) began a weekly Wednesday night seminar, which began at 9
PM after graduate courses were completed, so all the graph theorists at Stevens (housed variously in
the mathematics, electrical engineering, computer science and operations research programs) could
view presentations in the field by faculty, research students or visitors. A significant component of
these meetings, in keeping with Suffel and Boesch’s down-to-earth personalities, was the choice of
refreshment: pizza and beer.

After the seminar ended in the 1990s, the group met on a semi-regular basis (sans pizza and
beer) and included faculty from both Stevens and Seton Hall as well as Stevens graduate students
and Seton Hall undergraduates. Suffel took special pride in these sessions and always offered
constructive suggestions. Numerous papers and theses resulted from these meetings, and a listing
is included later in this article.
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2 Suffel’s Research

Charlie Suffel received his Ph.D. from Brooklyn Polytechnical University in 1969 under the direction
of the functional analyst George Bachmann. He also worked for a stint at Bell Labs before joining
Stevens Institute of Technology as an assistant professor. The first half dozen publications of his
academic career were in the area of functional analysis and topological vector spaces. Promoted to
full professor in 1979, Suffel would go on to co-author more than more than 50 papers in the areas
of graph theory and network reliability theory. The first of these studied subgraphs of Eulerian
graphs [15]; coauthored with Boesch and Ralph Tindell, it appeared in the first edition of Journal
of Graph Theory . In fact, his most frequent collaborators were Boesch (27 co-authored papers),
Dan Gross (23), John T. Saccoman (13) and Bill Kazmierczak (12), the latter two being among
Suffel’s 15 completed Ph.D. students. What should be noted is that Suffel continued to be an
active researcher during his 20 years (1995-2015) as the Dean of Graduate Studies at Stevens; in
fact, 30 of his papers were published during that time, and more than half of his Ph.D. students
graduated in that period. His research efforts were recognized by Stevens when he was honored as
a co-recipient of the Jess H. Davis Memorial Award for Research Excellence.

2.1 All-terminal Reliability and Spanning Trees

Graph vulnerability parameters, those parameters of graphs that in some sense measure the ‘strength’
of a graph, were of lifelong interest to Suffel, particularly questions of extremality. Let Gn,m denote
the class of simple graphs with n nodes and m edges. Important examples of extremality questions
are: Which graphs in particular Gn,m classes are the strongest or the weakest (by some measure)?
Do these strongest or weakest graphs have easily identifiable features in general? Are there partic-
ular operations that will uniformly make a graph stronger or make it weaker? Suffel was able to
make significant contributions to all of these questions, and for a wide variety of such parameters.

One graph vulnerability parameter which has garnered particular attention and generated an
extensive literature is the all-terminal reliability of G, denoted RG(p), which is the probability that
G is still connected if each edge of G fails independently with probability p. In general RG(p) is
#P -hard to compute, with the difficultly scaling exponentially in the number of nodes and edges
[48]. In [11] however Suffel et al. were the first to prove that for some Gn,m there existed a uniformly
optimally reliable graph, a graph G ∈ Gn,m for which RG(p) ≥ RH(p) for any p ∈ (0, 1) and any
H ∈ Gn,m. Uniformly optimally reliable graphs, the ‘strongest’ graphs by the all-terminal reliability
measure, have been discovered for a number of other graph classes [1, 24, 38, 46, 47, 49, 50], which
include a few by Suffel students and frequent co-authors Dan Gross and John T. Saccoman.

The coefficients of the polynomial RG(p) contain combinatorial information about G. The
coefficient of the lowest order term of RG(p) is τ(G), the number of spanning trees of G, sometimes
called the complexity of G. The complexity τ(G) is itself a widely-recognized measure of graph
and network strength, and here too Suffel made important contributions to extremality problems.
Uniformly optimally reliable graphs are necessarily τ -optimal, i.e., have the most spanning trees
in their Gn,m class. Beyond the uniformly optimally reliable graphs already mentioned however,
Suffel et al. [42] identified τ -optimal graphs in additional Gn,m classes, and he was one of the
first to look at the problem in the broader context of multigraphs [25]. A number of others,
including his student Louis Petingi, have identified more types of τ -optimal graphs in various
classes [21, 35, 36, 37, 43, 44]. The coefficient of the highest order term of RG(p) is called the
reliability domination of G and is denoted d(G). Suffel was among the first to investigate d(G),
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helping to demonstrate its relationships to important combinatorial parameters such as acyclic
orientations, Whitney’s broken cycles, and Tutte’s internal activity associated with the chromatic
polynomial [12]. He also identified extremal graphs for d(G) [13]. For details and other results we
refer the reader to the survey [14], which was co-authored by Suffel.

Some of the tools used in the previous results deserve special mention. Let NG(u) and NG(v)
respectively denote the open neighborhoods in G of u and v. The compression of G from u to v
produces a new graph H by, for each x ∈ NG(u) − NG(v) − {v}, removing all edges from G of
the form ux and replacing them with corresponding edges of the form vx. An inverse operation,
call it decompression, can be defined if a graph G contains a node v which dominates another
node u, that is, if they satisfy NH(u) − {v} ⊆ NH(v) − {u}. In this case, for any collection
of x ∈ NH(v) − NH(u) − {u}, we produce a new graph G by removing edges of the form vx and
replacing them with corresponding edges of the form ux. An illustration of these operations appears
in Figure 1.

Figure 1: An illustration of graph compression and decompression. The compression of G from u
to v transforms the graph G on the left to the graph H on the right. Decompression on H from v
to u transforms the graph on the right to the graph on the left. Note that decompression requires
node v to dominate node u.

Graph decompression appears to have been first employed by Kelmans in [36] who showed that,
when applicable, it increases all-terminal reliability for all p ∈ (0, 1), and can be used to identify
uniformly most reliable graphs in the most edge-dense Gn,m classes. Suffel et al. independently
rediscovered decompression in [47] (calling it ‘the swing surgery’), and reproved Kelmans’s reliability
results. But in [47] Suffel et al. were also the first to recognize that the compression operation
had important extremal consequences as well. They showed that repeated application of graph
compression can transform any G ∈ Gn,m into a threshold graph, a well-known and much-studied
class of graphs (see for example [40]). Since compression uniformly decreases all-terminal reliability,
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this establishes that for any G ∈ Gn,m there is a threshold H ∈ Gn,m such that RH(p) ≤ RG(p),
and thus minimum graphs for all-terminal reliability must necessarily be threshold.

The result of Suffel et al. [47] on threshold graphs and graph compression has had important
consequences for a wide variety of extremality problems: if a graph parameter can be shown to
be decreased (resp. increased) by graph compression, then necessarily threshold graphs minimize
(resp. maximize) that graph parameter. In this way threshold graphs have been shown to be
extremal for a surprising variety of graph parameters, and in the rest of this section we hope to
give the reader some idea of their scope. Threshold graphs have been shown to minimize other
graph vulnerability parameters such as number of spanning trees [16], toughness, edge toughness,
and binding number [32], and they maximize scattering number and rupture degree [31, 32]. Graph
compression has also been shown to affect a number of other, non-vulnerability graph parameters
as well. Threshold graphs minimize the number of k-factors for any k [23], minimize the number of
k-matchings for any k [18], maximize the largest root of the matching polynomial [18], maximize
both the number of independent sets of order r and the number of cliques of order r for any r
[18], minimize the smallest real root of the independence polynomial [18], minimize the magnitude
of the ith coefficient of the chromatic polynomial for any i [45], minimize the magnitude of the
ith coefficient of the Laplacian polynomial for any i [18], maximize the spectral radius [17], and
maximize the number of homomorphisms into certain target graphs [19, 20]. Most recently, a far-
reaching generalization of Suffel’s original results on all-terminal reliability has shown that a vast
array of parameters associated with the Tutte polynomial are decreased, or in rare cases increased,
by graph compression [33]. (The all-terminal reliability polynomial RG(p) is a particular evaluation
of the Tutte polynomial of G.) Parameters decreased include the number of spanning forests and
the number of spanning connected subgraphs; the number of acyclic orientations, totally cyclic
orientations, acyclic orientations with a single source, or score vectors of orientations; enumerations
of a wide variety of different types partial orientations; the magnitude of the coefficients of the flow
polynomial; and the number of critical configurations of level i of the Abelian sandpile model.
By the result of Suffel et al. in [47], then, all of the parameters listed are minimized by threshold
graphs. In addition, in [33] evaluations of the q-state Potts model from theoretical physics for q ≥ 1
are shown to be increased by compression, hence these are maximized by threshold graphs.

2.2 Component Order Reliability

While giving a talk on the residual node reliability model at the Clemson Mini-Conference on
Discrete Mathematics and Algorithms, Frank Boesch was told by a member of the audience that
he could not study this model.

Traditionally, the reliability of a graph was the all-terminal reliability. This model was based
on the telephone network, where the phones are the nodes, and the wires are the edges. The old
phones were virtually indestructible, the network was only interrupted when the phone lines went
down. With the introduction of computers and computer networks the scenario had changed. The
computers often crashed, while the links remained operational. A different model was needed.

Let G = (V,E) be a graph with node set V and edge set E and let n = |V | and m = |E|. In
this model edges are perfectly reliable, but nodes operate with equal but independent probability
p. A subset W ⊆ V is an operating state if the subgraph induced by W is connected. The residual
node reliability, Rn(G, p), is the probability that the surviving nodes form an operating state. The
assumption that the nodes operate independently of each other allows us to express Rn(G, p) in the
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following form: Rn(G, p) =

n∑
i=1

Si(G)pi(1 − p)n−1, where Si(G) is the number of operating states

of order i.
The complaint was because the model was not coherent. A collection of subsets of a set is

coherent if whenever a subset belongs to the collection, then every superset of it also belongs.
Consider, for example, the graph K100 with a pendant edge uv between the node u on the K100

and a node v disjoint from the K100. If nodes u and v fail, the surviving nodes induce a K99, thus
is an operating state. However, if only u fails, the surviving nodes induce a disconnected graph, so
is not an operating state. Thus, the collection of operating states is not coherent; a superset of an
operating state need not be operational. Another drawback of this model is that relatively small
operating states are tolerated. If in the example only u and v are operating then an operating state
exists, even though 99% of the nodes failed.

While Boesch and Suffel did not appreciate being told what they could study, they did acknowl-
edge that there were some problems with the model. On the drive home they tried to see if they
could come up with a model that addressed these problems. The scenario they came up with was
the following. Consider a distributive computer network in which, upon the failure of some of the
computers, the network may still be operational, even if disconnected, as long as there remains
a “sufficiently large” portion of the network which is still interconnected. Now if additional com-
puters came back online the network would remain operational. Also, the specification of what is
“sufficiently large” would preclude small operating states. Suffel, Boesch, and Gross (BGS), began
to work on developing a new reliability model based on this new notion.

Let G = (V,E) be a graph with node set V and edge set E and let n = |V | and m = |E|.
Let k be a fixed integer, with 0 < k ≤ n. In this model edges are perfectly reliable, but nodes
operate with equal but independent probability p. A subset W ⊆ V is an operating state if the
subgraph induced by W contains a connected component of order at least k. The k node operating

component reliability of G, denoted R
(k)
α (G, p), is the probability that the surviving nodes form

an operating state, i.e., it contains a component of order at least k. The assumption that the

nodes operate independently of each other allows us to express R
(k)
α (G, p) in the following form:

R(k)
α (G, p) =

n∑
i=k

A
(k)
i (G)pi(1 − o)n−1, where A

(k)
i (G) is the number of operating states of order i,

i.e., an i-node induced subgraph of G that contains a connected component of order at least k.

In [6, 7, 8] BGS introduced R
(k)
α (G, p) and studied several properties of it. Since any i-node

induced subgraph of G that contains a connected component of order at least k + 1 contains a

connected component of order at least k, it follows that A
(k+1)
i (G) ≤ A

(k)
i (G) for every i, thus

R
(k+1)
α (G, p) ≤ R

(k)
α (G, p). Examples were given that show the computation of R

(k)
α (G, p) is more

involved than just deleting the first term of R
(k+1)
α (G, p). It is known that the calculation of

Rn(G, p) is #P-hard. This implies that the calculation of R
(k)
α (G, p) for all k has to be #P-hard.

If for each k, R
(k)
α (G, p) could be computed in polynomial time, then for each k, A

(k)
k (G) could

be computed in polynomial time. Since A
(k)
k (G) = Sk(G), the computation of Rn(G, p) could be

done in polynomial time. Since the collection of operating states is coherent, the Kruskal-Katona
inequality was used to find bounds for the reliability.
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2.3 Component Order Connectivity

Boesch, Gross, and Suffel turned their attention to studying the vulnerability of a network. For
the residual node reliability model, the network is not operational or has failed if the deletion of
nodes results in a disconnected graph. The minimum number of nodes whose deletion disconnects
the graph is the (node) connectivity and is denoted by κ. In [9, 10] BGS introduced and began to
study the analogous vulnerability parameter for the component order connectivity model. Recall
in this model that nodes fail and edges do not. Given a predetermined value k, 2 ≤ k ≤ n, a set of
nodes W is an operating state if it induces a subgraph that contains a component of order at least
k; otherwise we say W is a failure state. The k component connectivity or simply component order

connectivity, denoted κ
(k)
c , is the minimum |U | such that U is a subset of V and all components of

the subgraph induced by V − U have order ≤ k − 1, i.e., V − U is a maximum order failure state.
If the failure of a set of nodes produces a surviving subgraph with no component of order at

least k, then there are no components of order at least k+ 1. Thus, it follows that κ
(n)
c ≤ κ(n−1)c ≤

· · · ≤ κ(2)c . Some of these values are easy to calculate: κ
(n)
c = 1 for any graph; κ

(n−1)
c = 1 if there is

a cutpoint, 2 otherwise. On the other end of the spectrum, the calculation of κ
(2)
c is #P-hard for

an arbitrary graph, as κ
(2)
c of a graph is equal to n minus the independence number of the graph.

Failure states can be formed two different ways: either the subgraph induced by V − U is
disconnected and all components have order ≤ k−1, or the induced subgraph is connected and has
order ≤ k−1. In the former case |U | ≥ κ while the latter case |U | ≥ n−k+1. But if |U | ≥ n−k+1,

then V − U is always a failure state, thus κ
(k)
c ≤ n− k + 1. These conditions are used to establish

the relationship between κ and κ
(k)
c , namely that if κ ≥ n − k + 1 then κ

(k)
c = n − k + 1, and if

κ ≤ n− k then κ ≤ κ(k)c ≤ n− k.
A graph G in Gn,m is max κ if κ(G) ≥ κ(H) for all H in Gn,m. Similarly, a graph G in Gn,m

is max κ
(k)
c if κ

(k)
c (G) ≥ κ

(k)
c (H) for all H in Gn,m. If δ is the minimum degree of a graph, then⌊

2m
n

⌋
≥ δ ≥ κ and a graph G is max κ if and only if

⌊
2m
n

⌋
= δ = κ. If

⌊
2m
n

⌋
≥ n − k + 1, then

every max κ graph is max κ
(k)
c , with κ

(k)
c = n− k + 1; if

⌊
2m
n

⌋
= n− k, then every max κ graph is

max κ
(k)
c , with κ

(k)
c = n − k. For the case

⌊
2m
n

⌋
< n − k there exists classes of graphs where it is

impossible to simultaneous maximize κ and κ
(k)
c .

At this point, thesis students were brought into the research group to work on the models,
the first being L. William Kazmierczak. In [3] they found a condition that guarantees a strong
network design for relatively dense graphs. The main result follows: If δ =

⌊
2m
n

⌋
≥
⌊
n
2

⌋
and C4

is not contained in the complement of G, then G is max κ and G is max κ
(k)
c , for k ≥ 3. These

graphs also have diameter ≤ 2. In [3] constructions were also provided of graphs satisfying these
conditions. In [34] they asked the following questions: (1) Given a ≥ n − k + 1, does there exist

a graph G on n nodes with κ = a and κ
(k)
c = n − k + 1, and (2) Given a ≤ b ≤ n − k, does there

exist a graph G on n nodes with κ = a and κ
(k)
c = b. They were able to answer both questions in

the affirmative.

2.4 Component Order Edge Connectivity

The research group then turned their attention to an analogous vulnerability parameter for edge
failure. In the traditional edge-failure model the network is operational if, after the failure of
edges, the remaining edges induce a connected graph; in this case we say the remaining edges then
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constitute an operating state. The vulnerability parameter associated with this mode is the edge
connectivity λ, which is the minimum number of edges whose deletion disconnects the graph. For
this model, the collection of operating states is coherent, so the deficiencies associate with residual
node connectivity are no longer present. Still, as with the previously discussed component order
connectivity model, there may be situations for which it is not necessary that the surviving subgraph
is connected, but only that there is a connected component of order at least some predetermined
threshold value. The group was joined at this point by A. Suhartomo, a student of Boesch. In [4]
they introduced the parameter component order edge connectivity.

Given 2 ≤ k ≤ n, the k-component edge connectivity, or simply the component order edge

connectivity of G, denoted by λ
(k)
c , is the minimum number of edges whose deletion results in a

subgraph with all components of order ≤ k − 1. Unlike the case for κ
(k)
c , a failure state for this

model must disconnect the graph, so λ ≤ λ(k)c , for each k, 2 ≤ k ≤ n. In fact, λ ≤ λ(n)c ≤ λ(n−1)c ≤
· · · ≤ λ

(2)
c = m. They showed for any graph G and any value of k, κ

(k)
c ≤ λ

(k)
c , which is analogous

to the well-known result that κ ≤ λ. Is it possible to simultaneously maximize both κ
(k)
c and λ

(k)
c

for all k? The answer is no, as can be shown even for trees. Consider the collection of trees on n
nodes, and let Pn be the path, K1,n−1 be the star, and Tn be any other tree. Then it is not difficult

to show that κ
(k)
c (K1,n−1) ≤ κ

(k)
c (Tn) ≤ κ

(k)
c (Pn) and λ

(k)
c (Pn) ≤ λ

(k)
c (Tn) ≤ λ

(k)
c (K1,n−1). Thus,

for any value of k, the best tree for κ
(k)
c is the worst tree for λ

(k)
c , while the best tree for λ

(k)
c is the

worst tree for κ
(k)
c .

By this time the group was joined by John T. Saccoman, who had been a student of Suffel. In

[2] they showed the following result: Let G be a connected group of order n. If δ(G) ≥
⌊

n
a+1

⌋
,

1 < a ≤ k− 1, then λ
dna e
c (G) ≥ δ(G). This generalizes the result of Chartrand, that if δ(G) ≥

⌊
n
2

⌋
,

then λ(G) = δ(G), since when a = 1, λ
(k)
c = λ. Unfortunately, shortly after the completion of this

paper our colleague Frank Boesch passed away.

2.5 Weighted Component Edge Connectivity

The group, which now had Lakshmi Chandra as a member, next considered the notion of weighted
component edge connectivity, a generalization of component order edge connectivity [29, 30]. In this

model positive weights w(v) are assigned to each node v. Let W =
∑
v∈V

w(v) and w̄ = max{w(v)|v ∈

V }. Given a predetermined threshold value k, with w̄ ≤ k ≤ W , the weighted component edge

connectivity of G, denoted by λ
(k)
wc , is the minimum number of edges whose deletion results in a

subgraph with all components having total weight ≤ k − 1.

If w(v) = α for each node, then λ
(k)
wc = λ

d kαe
c , in particular when α = 1 we have λ

(k)
wc = λ

(k)
c . In

[29, 30] the following problem were considered: Given k − 1 ≥ w1 ≥ w2 ≥ · · · ≥ wn > 0, determine

trees TM and Tm on n nodes and an assignment of the weights to the nodes such that λ
(k)
wc (TM )

is maximum over all trees on n nodes and λ
(k)
wc (Tm) is minimum over all trees on n nodes. In the

uniformly weighted case the problems are satisfied by K1,n−1 and Pn, respectively. For the general
weighted case, the maximum value is achieved by assigning wi to the center node of K1,n−1. The
minimum value is achieved by applying a bin packing algorithm to the nodes of Pn, where the bins
are consecutive nodes.

Efficient algorithms to compute λ
(k)
wc of a tree and of a unicycle were also provided. It should
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be noted such algorithms were provided for all the component order parameters introduced.

2.6 Neighbor-Component Order Connectivity

In [26, 27] Gunther and Hartnell first introduced the idea of neighbor-connectivity. The notion
of neighbor-connectivity provides important information on how reliable a network can be when
failures of a node may impact its neighbors. With the neighbor-connectivity parameter, the failure
of a node causes the deletion of its closed neighborhood, i.e., the node and its adjacent neighbors as
well. The minimum number of closed neighborhoods whose removal results in an empty, complete,
or disconnected subgraph is called the neighbor-connectivity of the graph.

Considered as a reliability model, the state of the associated system consists of those nodes
which are operating, i.e., those nodes that have neither failed nor are in the closed neighborhood of
a failed node. Note that with this definition, small disconnected components also survive. This is
not what one may expect in the previous component order models. Instead, we would expect that
large components are still operating, but not the small ones. Adapting neighbor-connectivity to
a component order model, Kristi Luttrell, a student of Kazmierczak, introduced the vulnerability
parameter neighbor-component order connectivity [39]. Given 1 ≤ k ≤ n, the k-neighbor-component

order connectivity of G, denoted by κ
(k)
nc (G) or simply κ

(k)
nc when G is understood, is the minimum

|D| such that D ⊆ V and 〈V − N [D]〉 is a failure state, i.e., all components of 〈V − N [D]〉 have
order ≤ k − 1.

One immediate result is that for any graph G on n nodes, κ
(k)
nc (G) ≤ κ(k)c (G) for 2 ≤ k ≤ n. An

arbitrary tree provides interesting realizability results pertaining to the aforementioned parameters.
It has been previously shown that the component order connectivity of an arbitrary tree of order
n lies between that of the star graph and the path graph of order n [9, 10]. However, the neighbor-
component order connectivity of a tree can be larger than that of the path. Since the component
order connectivity of a graph is at least as large as the neighbor-component order connectivity,
then an upper bound for the neighbor-component order connectivity of an arbitrary tree is the

component order connectivity of the path [22]. For any tree Tn on n nodes, 1 = κ
(k)
c (K1,n−1) ≤

κ
(k)
c (Tn) ≤ κ(k)c (Pn) =

⌊
n
k

⌋
.

We observe that with a threshold value of 1 the neighbor-component order connectivity of a
graph is equivalent to the domination number of the graph. Given a graph G, a node v in the
graph is said to dominate itself and all of its neighbors, i.e., v dominates the nodes in the closed
neighborhood N [v]. A set S of nodes in G is a dominating set of G if every node in G is dominated
by at least one node in S, i.e., every node not in S is adjacent to at least one node in S. The
domination number, denoted by γ(G) or simply γ, is defined to be the minimum cardinality among

the dominating sets of nodes in G. Since κ
(1)
nc (G) = γ(G), the problem of computing the neighbor-

component order connectivity of an arbitrary graph for an arbitrary threshold value is #P-hard.
A graph parameter ρ has the subgraph property if whenever H is a subgraph of G, ρ(H) ≤ ρ(G).

Unlike κ
(k)
c which has the property, κ

(k)
nc does not.

2.7 Neighbor-Component Order Edge Connectivity

The final vulnerability parameter is the edge version of neighbor-component order connectivity.
The parameter, introduced by Monica Heinig in [28], is neighbor-component edge connectivity.
In this model edges may fail, and when an edge fails its end nodes are subverted, thus all other

8



edges emanating from the end-nodes are rendered inoperable and are removed from the graph.
Alternatively, when an edge fails, the resulting subgraph is the graph that results from the deletion
of the end-nodes.

Let 2 ≤ k ≤ n. Upon the failure of some edges, and the removal if any other edges incident on
the edges, the resulting subgraph is in a failure state if all components have order ≤ k − 1. The

neighbor-component order edge connectivity, denoted λ
(k)
nc , is the minimum number of edge failures

needed to create a failure state.
One immediate result is for any graph G on n nodes, λ

(k)
nc (G) ≤ λ(k)c (G). Since the failure of an

edge deletes its end nodes, κ
(k)
c (G) ≤ 2λ

(k)
nc (G). An important result that can be used to calculate

the value of λ
(k)
nc is that there exists a minimum failure set of edges that is a matching. A final

result gives an upper bound on the value of λ
(k)
nc , namely λ

(k)
nc ≤

⌈
n−k+1

2

⌉
.

3 Suffel’s Teaching and Mentorship

Dr. Charles Suffel taught for more than 50 years at Stevens Institute of Technology. A mathe-
matician by trade, he also taught courses in electrical engineering, computer science and operations
research. He was known for his humor, rigor, and attention to detail. Suffel received numer-
ous awards for the quality of his teaching, including the Stevens Alumni Association Outstanding
Teacher Award in 1978 and 1991 and the Henry Morton Distinguished Teaching Professor Award
in 1989. It is rare to find a professor who excels in both the teaching aspects of the profession and
the research side. While he received several research grants over his academic career, Suffel’s main
contribution to the field was his mentorship of Ph.D. theses.

3.1 Ph.D. Theses

Dr. Charles Suffel was a very well-respected thesis advisor. His ability to bring students on board
and prepare them for the rigors of Ph.D. research is legendary at Stevens and in the Graph Theory
community. In an unironic fashion, he referred to his Ph.D. students as his academic “children”
and displayed as much pride in their activities, frankly, as would any biological parent. In fact, the
word “family” pops up in most reminiscences about him, and you will see that in the subsequent
sections of this article. One of the co-authors of this article, Dr. Kristi Luttrell, was a Ph.D. student
of Dr. L. William Kazmierczak, and, of course, was referred to by Suffel as his “granddaughter.”
Not surprisingly, “Grandpa” was a member of Luttrell’s thesis committee.

The following table lists all of the Ph.D. students of Charlie Suffel. All his students’ Ph.D.s
are from Stevens Institute of Technology. If those students mentored Ph.D. students, their names
are listed under “Descendents.” Those descendents who earned their degrees from Stevens are
indicated with an asterisk.

3.2 Stevens Institute of Technology Teaching

The material in this section is taken from a tribute to Suffel that is a part of the Stevens Institute
of Technology website [51].

Alicia Muth, doctoral candidate in the Department of Mathematical Sciences, came to consider
Suffel family as he mentored her over the years. “In my first semester at Stevens,” she recalled, “I
was falling behind in his advanced calculus course. When I spoke to him about the difficulties I
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Table 1: Charlie Suffel academic geneology
Name Year Descendants

John Burns 1976
Douglas Bauer 1978 Lewis Lasser*, Linda McGuire*,

Michael Yatauro*, Aori Nevo*
Lynne Doty 1986

Laura Schoppmann 1990
Constantine Stivaros 1990

Louis Petingi 1991 Mohammed Talafha
Zhong Chen 1994

John T. Saccoman 1995
Jay Stiles 1998

L. William Kazmierczak 2003 Kristi Luttrell*
Nathan Kahl 2005

Nikolay Strigul 2007
James Weatherall 2009 Benjamin Feintzeig, Samuel Fletcher,

Marian Gilton, Sarita Rosenstock
Lakhmi Vidyasagar 2013

was having, rather than dismiss me, he understood and began meeting with me weekly.” Muth and
Suffel went on to collaborate on a paper about graph theory, published and presented at the Stevens
Graduate Research Conference, MAA MathFest, and the Southeastern International Conference on
Combinatorics, Graph Theory, and Computing.

Linda Habermann-Ward, assistant in the Department of Mathematical Sciences, said that Suffel
was her first supervisor when she began working at Stevens more than 20 years ago. According to
Haberman-Ward, Suffel was a “tough but fair” instructor. “His students built personal relationships
with him that lasted decades and honestly, they loved and adored him and he them,” she said. “He
was so positive and encouraging. That carried over into everything he did. He always had a kind
word and a smile. You couldn’t help but feel happiness when you saw him walk in.”

Robert Gilman, professor of mathematics, recalled, “I remember that Charlie used to joke a lot
about how tough he was on students. He did expect a lot from his students, but he also cared a
lot about them. If a student was having difficulty but working hard, Charlie was always there to
help.”

4 Personal Reminscenses

One former student, Stevens graduate Brian King, was quoted in the Stevens alumni magazine
The Indicator regarding Suffel, “I’m certain that, in most instances, he was the smartest person in
the room, but he never portrayed himself that way.”
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4.1 Fr. Gabriel Costa, Ph.D.

Faith was a major component in Charlie Suffel’s life. His dear friend and confidante, Fr. Gabriel
Costa, Ph.D., celebrated Charlie Suffel’s funeral mass. Here is his reflection on his friend.

Actual conversation between two Stevens Tech Ph.D. students, circa 1971:

Graduate Student 1: “I’m really glad that I decided to study math here at Stevens Tech.”

Graduate Student 2: “Yeah, the math faculty is great. Brilliant. . . and nobody stands on
ceremony.”

Graduate Student 1: “You’re right about that. Take Charlie Suffel. Great guy. After only two
days, he’s your friend.”

Graduate Student 2: “It took you TWO days to become his friend!”

Charlie Suffel was the big brother I never had.

I met Charlie as a young Masters Degree student in 1970. We became fast friends, and I would
often speak with him about Mathematics, Baseball, and - at times - issues about life. Often, I
would seek his counsel. . . and I would never leave his office without something to ponder.

In 1972 I completed my masters degree. I decided to move on from Stevens, though not quite
sure what the future would hold. At the age of twenty-four I was trying to discern; would it be
Marriage, Priesthood, Graduate School, Industry, etc.?

Much would happen during the next eight years, including my becoming a priest and deciding
to pursue doctoral studies in Mathematics.

So, I returned to my roots. . . my alma mater. . . Stevens Institute of Technology.

It was good to be back. And it was good to see Charlie again. I had put on some weight and
Charlie was losing more hair (I couldn’t resist). Charlie and I took up our friendship where we left
off. And, over the ensuing years, I would be privileged to minister to Charlie and his family as a
priest.

Oh. . . those were the days! Our families would come together there would be humor, celebra-
tions, stories told over and over. . . feasts. . . true joy and true fellowship.

There would be nights of Poker and trips to Yankee Stadium. Families and friends would
often break bread. There would be weddings and baptisms. There would be jokes and cigars
with perpetual viewings of The Godfather. There would be visits to local pubs and the sketching
of nuanced mathematical diagrams on paper napkins, while sitting at the bar, imbibing potent
potables and wolfing down hamburgers.

And there would be support when friends and family members would be called Home to Eternity.

For the last twenty years or so, Charlie and I would chat on the phone once or twice a week.
The topics were varied, and discussions could go on for over an hour. But the underlying message
was always one of concern, support and brotherly love.

More than anything, I miss those calls.

Charlie left three legacies: His devotion to God and a commitment to live a Christian life. . . his
unwavering love for and loyalty to his family and his friends. . . his passion for all things Mathemat-
ical (research and teaching).

While many feel that Charlie left this life much too soon, in truth, he epitomized the very
reason why Jesus Christ came among us:

“I came that they might have life and have it more abundantly.” - John 10:10

Professor Charlie Suffel lived life to the full.
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4.2 Dr. Monika Heinig

Dr. Monika Heinig is the Director of Data Science and Analytics at the New York Company Clyde.
Monika was a Ph.D. student of Suffel, his student in several graduate classes, and his teaching
assistant. She says, “He saw the potential in people and wanted them to live up to that and would
try to help in any way he could. He would push you because he knew you could do it, while
providing guidance and support. And once you were one of his Ph.D. students, you became family;
you were one of his academic children. And that made you want to be better because you wanted
to make him proud.”

Regarding his teaching style, Dr. Heinig said, “He was the best lecturer I’ve personally ever
seen. ... While he seemed to have completely memorized everything, he always prepped before
every class and just spoke ‘in the order of the progression of things’ as he would explain it... He
was an extremely fair and transparent professor. He would crack jokes and tell stories, and would
always have a beer after class ‘but never before!’ ”

Of Charlie’s presence on the Stevens campus, Monika says, “He was such a staple both at the
Math Department and at Stevens. I’ve only known both with him there and I can’t imagine either
without him. Everyone seemed to know him and love him; He was kind of like a celebrity around
campus. Anytime I interacted with anyone outside the math department and said I was Charlie’s
Ph.D. student I would get the same reaction every time — a huge smile and ‘Oh Charlie? I know
Charlie! He’s great!’ ”

Speaking for many of his Ph.D. students, Monika says that she will miss “his laugh, his stories
that he would tell over and over again (without realizing he had already told it, probably several
times), his generosity, his kindness, his wisdom, and his presence.” Echoing the sentiments of Brian
King, Dr. Heinig says, “He could hold a conversation with anyone he met, usually about any topic.
And as brilliant as he was, he never made anyone feel less than.”

The authors of this article concur. We miss him greatly.

12



References

[1] K. Archer, C. Graves, and D. Milan, Classes of uniformly most reliable graphs for all-terminal
reliability. Discrete Appl. Math. 267 (2019), 12–29.

[2] F. Boesch, D. Gross, L. Kazmierczak, J.T. Saccoman, C. Suffel, A. Suhartomo, A generaliza-
tion of an edge-connectivity theorem of Chartrand. Networks 54(2009), 82-89.

[3] F. Boesch, D. Gross, L. Kazmierczak, C. Suffel, Forbidden subgraph conditions on the com-
plement of a graph that insure a strong network design. Congressus Numerantium 161(2003),
65-74.

[4] F. Boesch, D. Gross, L. Kazmierczak, C. Suffel, A. Suhartomo, Component order edge con-
nectivity - an introduction. Congressus Numerantium 178(2006), 7-14.

[5] F. Boesch, D. Gross, L. Kazmierczak, C. Suffel, A. Suhartomo, Bounds for the component
order edge connectivity. Congressus Numerantium 185(2007), 159-171.

[6] F. Boesch, D. Gross, C. Suffel, A coherent model for node reliability. Congressus Numerantium
110(1995), 71-76.

[7] F. Boesch, D. Gross, C. Suffel, A coherent model for the reliability of multiprocessor networks.
IEEE Transactions on Reliability 45(1996), 678-684.

[8] F. Boesch, D. Gross, C. Suffel, Bounds for the k-node operating component reliability model.
Congressus Numerantium 123(1997), 33-41.

[9] F. Boesch, D. Gross, C. Suffel, Component order connectivity. Congressus Numerantium
131(1998), 145-155.

[10] F. Boesch, D. Gross, C. Suffel, Component order connectivity-a graph invariant related to
operating component reliability. Graph Theory, Combinatorics and Algorithms Vol. 1 (1999),
109-116.

[11] F.T. Boesch, X. Li, C. Suffel, On the existence of uniformly optimally reliable networks.
Networks 21 (1991), 181–194.

[12] F.T. Boesch, A. Satyanarayana, C. Suffel, Some alternate characterizations of reliability dom-
ination. Probability in the Engineering and Informational Sciences 4 (1990), 257–276.

[13] F.T. Boesch, A. Satyanarayana, C. Suffel, Least reliable networks and the reliability domina-
tion. IEEE Transactions on Communications 38 (1990), 2004–2009.

[14] F.T. Boesch, A. Satyanarayana, C. Suffel, A survey of some network reliability analysis and
synthesis results. Networks 54 (2009), 99–107.

[15] F. Boesch, C. Suffel, and R. Tindell, The subgraphs of Eulerian graphs Journal of Graph
Theory 1 (1977), 79-84.

[16] Z. Bogdanowicz, Spanning trees in undirected simple graphs (Ph.D. Dissertation), Stevens
Institute of Technology, New Jersey, USA, 1985.

13
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