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Abstract

Kelmans, and later independently Bogdanowicz and Satyanarayana, Schoppmann, and Suffel,
showed that a graph operation which has come to be known as the compression of G from vertex
u to vertex v could not increase, and typically decreased, both the number of spanning trees
and the all-terminal reliability of a graph. Both these quantities are well-known vulnerability
parameters, i.e., measures of the strength of a network, and subsequently a number of other
prominent vulnerability parameters—including vertex connectivity, toughness, scattering num-
ber, edge connectivity, edge toughness, and binding number—have been shown to be affected by
compression in a similar way. As a consequence threshold graphs are extremal for all of the pa-
rameters mentioned. In this paper we show that for the graph vulnerability parameters integrity,
tenacity, and k-component order connectivity, if u, v are adjacent then compression cannot in-
crease, and typically decreases them. As a consequence, these parameters have quasi-threshold
graphs as extremal graphs. We also show, however, that there are graphs with non-adjacent u, v
where compression increases these parameters. To the best of our knowledge, these parameters
are the first identified that behave differently under compression depending upon which pairs
of vertices are used in the compression.

1 Introduction

Let G be a graph and let u, v ∈ V (G), and let NG(u) and NG(v) denote the neighborhoods in G
of u and v respectively. The compression of G from u to v produces a new graph Gu→v by, for
each x ∈ NG(u)−NG(v)−{v}, removing all edges from G of the form ux and replacing them with
corresponding edges of the form vx. An illustration of this operation appears in Figure 1.

The compression operation has also been called a ’path property transformation’ [6], a ‘shift
transformation’ [8, 10], a ‘Kelmans transformation’ [13, 14], and a ‘swing surgery’ [25]. It’s ear-
liest applications were in network reliability: Kelmans first showed that τ(Gu→v) ≤ τ(G) and
RelGu→v(p) ≤ RelG(p), where τ(G) and RelG(p) represent respectively the number of spanning
trees and the all-terminal reliability polynomial of G, and subsequently Bogdanowicz [6] rediscov-
ered the spanning tree result and Satyanaraya, Schoppmann, and Suffel [25] rediscovered both the
spanning tree and reliability results. Later Brown, Colbourn, and Devitt [10] showed that the
transformation actually decreases every coefficient of the all-terminal reliability polynomial, gener-
alizing both the spanning tree and reliability results. (The number of spanning trees is one of the
coefficients of the all-terminal reliability polynomial.)
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Figure 1: An illustration of compression. On the left is a graph G, and on the right Gu→v, the
compression of G from u to v. If edge uv had been present in G, it would also be present in Gu→v.

Compression has since been shown to affect a number of other graph parameters as well. In
what follows we will indicate by “decreases parameter p” the relationship p(Gu→v) ≤ p(G), and
in a similar manner use “increases.” Compression has been shown to decrease the number of k-
factors for every k [18], decrease the number of k-matchings for any k [21], increase the spectral
radius of both G and its complement [14], increase the largest root of the matching polynomial [13],
decrease the smallest real root of the independence polynomial and the coefficients of the chromatic
polynomial [13], and increase the number of independent sets of order k for any k [13, 15]. And in
[15, 16], whose “compression” terminology and Gu→v notation we follow, the result on number of
independent sets was significantly generalized when compression from u to v was shown to increase
the number of homomorphisms into certain target image graphs. Most recently, in a companion
paper to this one [19] we examined a number of vulnerability parameters—vertex connectivity,
toughness, scattering number, edge connectivity, edge toughness, and binding number—and showed
that compression affects them in the same way that it affects τ(G) and RelG(p) (which are also
common vulnerability parameters). In all of these results, including the original ones on spanning
trees and all-terminal reliability, compression acts upon a graph G in a uniform manner: given
a parameter p, we have either p(G) ≥ p(Gu→v) or p(G) ≤ p(Gu→v), regardless of choice of G or
u, v ∈ V (G).

In this paper we examine another set of common vulnerability parameters—integrity, tenacity,
k-component order connectivity, and rupture degree—and show that provided that u, v are adjacent
we again have uniformity: p(Gu→v) ≤ p(G) for p equal to integrity, tenacity, and k-component
order connectivity for any k, and r(Gu→v) ≥ r(G) for rupture degree. We are able to show in fact
that rupture degree behaves uniformly, and r(Gu→v) ≥ r(G) for any choice of G and u, v ∈ V (G).
However we also give an infinite family of graphs that show that integrity, tenacity, and k-component
order connectivity can increase under compression when the distance between u and v is two. (When
the distance between u and v is three or more Gu→v is disconnected, and while our results still hold
here we are less interested in that case. For example, a number of graph vulnerability parameters,
including number of spanning trees and reliability, are trivially zero for disconnected graphs.) To
the best of our knowledge then, integrity, tenacity, and k-component order connectivity are the
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first parameters to exhibit this “non-uniform” behavior under compression.
We say vertex v dominates vertex u if NG(u) ⊆ NG[v], where N [v] = NG(v)∪{v}. If Gu→v 6= G

then the compression operation takes a graph where u, v do not dominate each other and produces
a graph in which one does dominate the other. A threshold graph is a graph in which, given any
pair of vertices, one must dominate the other, and a quasi-threshold graph is one in which, given
any pair of adjacdent vertices, one must dominate the other. Bogdanowicz [6] and Satyanarayana,
Schoppmann, and Suffel [25] also demonstrated that given any graph G, it is possible to produce
a threshold graph H from G via a sequence of compression operations, and Cutler and Radcliffe
[15, 16] demonstrated that it is possible to produce a quasi-threshold graph via a sequence of
compression operations on adjacent vertices. As a consequence, in this paper we also obtain that
threshold graphs maximize rupture degree, and quasi-threshold graphs minimize integrity, tenacity,
and k-component order connectivity.

All graphs in this paper are assumed to be simple (although see [10] for an extension of compres-
sion to multigraphs). The vulnerability parameters considered, as well as the terms and notation
necessary for those definitions, will be defined in the paper as they appear. For any undefined
terms we refer the reader to a standard reference like [9]. Finally, if NG(u)−NG(v)−{v} is empty
then Gu→v = G, and if NG(v) − NG(u) − {u} is empty then Gu→v is isomorphic to G, with the
isomorphism obtained by simply switching the labels of u and v. In these instances we clearly have
the results indicated, so in the rest of the paper we may assume that NG(u) − NG(v) − {v} and
NG(v)−NG(u)− {u} are both non-empty.

2 Compression with adjacent vertices

The vulnerability measures considered are all concerned with what happens when vertices are
deleted from a graph. We begin then with a few simple but useful observations on vertex deletions
and compression which for reference we give in a lemma.

Lemma 2.1. Let G be a graph and u, v ∈ V (G), with X ⊂ V (G), and let C be a component of
G−X.

1. If u, v /∈ V (C), then C is also a component of Gu→v −X on the same vertex set.

2. If u, v ∈ V (C), then G −X and Gu→v −X are identical except that C has been replaced by
Cu→v.

Proof. To prove the first statement we show that the edges within C are identical in G − X and
Gu→v − X, and then that there are no edges connecting any vertex of C to any non-C vertex
in Gu→v. The only edges that change endpoints during compression from u to v are edges that
change an endpoint from u to v. Since u, v /∈ V (C), therefore no edges within C can have changed
endpoints during compression, and thus the edges within C are identical in G−X and Gu→v −X.
Now assume the contrary that there is an x ∈ V (C) and y /∈ V (C) such that xy is an edge of
Gu→v−X. Since xy /∈ G−X, then we must have either that xy was deleted, i.e. y ∈ X, or that xy
was moved during compression, i.e. v = y. In the former case clearly xy is also deleted in Gu→v,
a contradiction. And in the latter case if vx is an edge of Gu→v − X that was moved then this
implies ux was an edge of G−X. Then in G−X we had u ∈ V (C), a contradiction as well.

To prove the second statement we simply note that, since we are deleting vertices, x ∈ NG−X(u)−
NG−X(v) − v implies x ∈ NG(u) − NG(v) − v and x /∈ NG−X(u) − NG−X(v) − v implies x /∈
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NG(u)−NG(v)− v. Thus more generally when u, v /∈ X we have (G−X)u→v = Gu→v −X, which
implies that u, v ∈ V (C) for a component C in G−X means that Cu→v has replaced C.

We note that Cu→v in the above lemma is not necessarily a single component. If for instance
dG(u, v) ≥ 3 then it is easy to see that u is an isolated vertex in Gu→v, and therefore an isolated
vertex in Cu→v as well.

Let ω(G) denote the number of components of a graph G and c(G) denote the order of the
largest component of G. We now give what is in many respects the main theorem of the section,
as results on integrity, tenacity, and k-component order connectivity all follow from it.

Theorem 2.2. Let G be a connected graph with u, v ∈ V (G) such that uv ∈ E(G). Then for every
X ⊆ V (G) there exists an X ′ ⊆ V (Gu→v) such that all three of the following hold:

1. |X ′| = |X|,

2. ω(Gu→v −X ′) ≥ ω(G−X),

3. c(Gu→v −X ′) ≤ c(G−X).

Proof. We consider the following three cases. In the first two cases we show that we may take
X ′ = X, in other words that ω(Gu→v − X) ≥ ω(G − X) and c(Gu→v − X) ≤ c(G − X). In the
third and final case a simple alteration of X produces the requisite X ′.

Case 1. v ∈ X. In this case note that Gu→v − v is the subgraph of G − v created by the
additional deletion of edges of the form ux for x ∈ NG(u)−NG(v). Thus, letting X = X ′, we have
Gu→v − X ′ ⊆ G − X, which implies both that ω(Gu→v − X ′) ≥ ω(G − X) and c(Gu→v − X ′) ≤
c(G−X).

Case 2. u, v /∈ X. Since uv ∈ E(G), in this case we must have u, v in the same component of
G − X. Call this component C. Then, again letting X ′ = X, by Lemma 2.1 the components of
G−X are identical to the components of Gu→v −X ′ with the exception that C has been replaced
by Cu→v. But since uv ∈ E(G) then uv ∈ E(Gu→v) and Cu→v is, like C, a single component. This
implies both ω(Gu→v −X ′) = ω(G−X) and c(Gu→v −X ′) = c(G−X).

Case 3. u ∈ X and v /∈ X. Let X ′ = X − {u} ∪ {v}. Then Gu→v − X ′ is isomorphic to a
subgraph of G−X; to see this note that Gu→v − v is isomorphic to a subgraph of G− u by simply
changing the label u to the label v in Gu→v−v. But Gu→v−X ′ isomorphic to a subgraph of G−X
implies both ω(G−X) ≤ ω(Gu→v −X ′) and c(Gu→v −X ′) ≤ c(G−X). Finally, for this X ′ since
u ∈ X ′, v /∈ X ′ we have |X ′| = |X − {u} ∪ {v}| = |X|.

The integrity of a graph G, denoted I(G), was introduced by Barefoot, Entriger, and Swart in
[2]. For a survey of structural results, bounds, and relationships between integrity and other graph
parameters we refer to [1]. Graph integrity is defined as

I(G) = min {|X|+ c(G−X) | X ⊆ V (G)} .

We call X ⊆ V (G) an I-set of G if I(G) = |X|+ c(G−X). We now have the following.

Theorem 2.3. Let G be a graph with u, v ∈ V (G) such that uv ∈ E(G). Then I(Gu→v) ≤ I(G).
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Proof. Let X be an I-set of G, so that I(G) = |X|+ c(G−X). By Theorem 2.2 there exists a set
X ′ such that |X ′| = |X| and c(Gu→v −X ′) ≤ c(G−X). But this implies

I(Gu→v) ≤ |X ′|+ c(Gu→v −X ′) ≤ |X|+ c(G−X) = I(G)

as required.

The tenacity of a graph G, denoted T (G), was introduced by Cozzens, Moazzami, and Stueckle
in [11, 12], and for a survey of results we refer to [24]. Graph tenacity is defined as

T (G) = min

{
|X|+ c(G−X)

ω(G−X)

∣∣∣∣ X ⊂ V (G)

}
.

We call X ⊂ V (G) a T -set of G if T (G) = (|X|+ c(G−X))/ω(G−X). We now have the following.

Theorem 2.4. Let G be a graph with u, v ∈ V (G) such that uv ∈ E(G). Then T (Gu→v) ≤ T (G).

Proof. Let X be a T -set of G, so that T (G) = (|X|+ c(G−X))/ω(G−X). By Theorem 2.2 there
exists a set X ′ such that |X ′| = |X| and c(Gu→v−X ′) ≤ c(G−X) and ω(G−X) ≤ ω(Gu→v−X ′).
This implies

T (Gu→v) ≤ |X
′|+ c(Gu→v −X ′)
ω(Gu→v −X ′)

≤ |X|+ c(G−X)

ω(G−X)
= T (G)

as required.

The concept of component order connectivity was introduced in [3, 4] as generalization of the
well-known connectivity parameter κ. The k-component order connectivity of a graph G, denoted

κ
(k)
c (G), is defined to be the minimum number of vertices necessary to delete in G in order to leave

no component of order k or greater, i.e.,

κ(k)c (G) = min {|X| | X ⊂ V (G) and c(G−X) < k} .

A survey of results can be found in [17]. Following [17], for a given k we will call a set X such that
c(G−X) < k a failure set of G for that k. We now have the following.

Theorem 2.5. Let G be a graph with u, v ∈ V (G) such that uv ∈ E(G). Then κ
(k)
c (Gu→v) ≤

κ
(k)
c (G) for any k.

Proof. Let k be fixed and let X be a minimum order failure set of G for that k, so |X| = κ
(k)
c

and c(G − X) < k. By Theorem 2.2 there exists a set X ′ ⊂ V (G) such that |X ′| = |X| and
c(Gu→v −X ′) ≤ c(G−X) < k, and so deleting X ′ also leaves no component of Gu→v −X of order
k or greater. Since |X ′| = |X|, any minimum such failure set for k in Gu→v must be no larger than

|X|, and therefore κ
(k)
c (Gu→v) ≤ |X| = κ

(k)
c (G) as required.

3 Compression and vertices at distance 2

In contrast to the previous results, for vertices u, v ∈ V (G) that are not endpoints of an edge it
is possible for compression from u to v to increase integrity, tenacity, or k-component order con-
nectivity for some k. We now present an example of an infinite family of graphs where just such
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Figure 2: A graph H whose integrity, tenacity, and k-component order connectivity (for k = 3)
increase after compression from u to v, when dH(u, v) = 2. H is on the left, and Hu→v is on the
right.

an increase occurs for vertices at distance 2. Since these parameters were just shown to decrease
when u, v are adjacent, but increase here, to the best of our knowledge these are the first examples
of graphs and graph parameters where the parameter does not uniformly increase or decrease after
compression.

Example. The join of graphs G1 and G2, denoted G1 +G2, is the graph with vertex set V (G1)∪
V (G2) and edge set E(G1)∪E(G2)∪ {xy |x ∈ V (G1) and y ∈ V (G2)}. Let H = K1 + sKr for any
r > 1 and s > r+ 1, and let u and v be vertices from any two distinct Kr’s. The graph Hu→v then
consists of K1 + ((s − 2)Kr ∪K1 ∪ C), where C = K1 + 2Kr−1 and v is the cutvertex of C. An
example of H and Hu→v for r = 2 and s = 4 appears in Figure 2.

Letting x denote the cutvertex of H and Hu→v, we see the only I-set of H is the one-element
set {x}, whose removal leaves s identical components each of order r, giving I(G) = r + 1. In
Hu→v, however, the I-set is the two-element set {x, v} whose removal leaves s − 2 components of
order r, two components of order r− 1, and the singleton u, which gives I(Hu→v) = r+ 2 > I(H).
For tenacity, it is not difficult to check that the T -sets are the same as the I-sets in H, which gives
T (H) = (r + 1)/s and T (Hu→v) = (r + 2)/(s + 1). Since s > r + 1, we have T (Hu→v) > T (H).

And for k = r + 1, the same analysis shows that κ
(r+1)
c (Hu→v) = 2 > 1 = κ

(r+1)
c (H). �

The example given, and in particular the I-sets, T -sets, and failure sets for k = r+1 that occur
in the example, suggests examining the effects of adding v to the I-set, T -set, or failure set of G,
which we do in the next theorem.

Theorem 3.1. Let G be a connected graph with u, v ∈ V (G), and let X ⊆ V (G). If there does
not exist an X ′ ⊆ V (Gu→v) satisfying the three conditions of Theorem 2.2, then there exists an X ′′

such that all three of the following hold:

1. |X ′′| = |X|+ 1,

2. ω(Gu→v −X ′′) = ω(G−X) + 1,

3. c(Gu→v −X ′′) ≤ c(G−X).
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Proof. We will first establish under what conditions we do not have such an X ′ as in Theorem 2.2.
If uv ∈ E(G) then Theorem 2.2 holds, so dG(u, v) ≥ 2. Furthermore, we see that in Cases 1 and 3
of the proof of that theorem we did not require uv ∈ E(G), and so those cases hold here as well.
Thus if the X ′ of Theorem 2.2 does not exist we must have u, v /∈ X. We consider the following
three cases, the first two of which also show the three conditions of Theorem 2.2 are still satisfied,
and the last of which gives the conditions shown above.

Case 1. dG−X(u, v) = 2. Since u and v have a common neighbor in G−X then they must be in
the same component of G−X, and since compression does not change edges for common neighbors
of u and v we must have u, v in the same component of Gu→v −X as well. Hence G−X is iden-
tical to Gu→v −X with the exception that the component C containing u, v has been replaced in
Gu→v by the component Cu→v, and since V (Cu→v) = V (C) we may take X ′ = X and the stronger
inequalities of Theorem 2.2 hold.

Case 2. u, v in same component and dG−X(u, v) ≥ 3. As in the previous case G−X is identical
to Gu→v − X with the exception that C has been replaced with Cu→v. Since dG−X(u, v) ≥ 3
here, however, Cu→v consists of two components, the isolated vertex u and another component
whose vertex set is V (C) − {u}. By Lemma 2.1 the other components of Gu→v − X are identi-
cal to the non-u, v components of G − X, and so we must have ω(Gu→v − X) > ω(G − X) and
c(Gu→v −X) ≤ c(G−X), which means we can take X ′ = X and the inequalities of Theorem 2.2
hold here again.

Case 3. u, v in different components. Call the components Cu and Cv respectively, and let
C1, . . . , Ck denote the components of G−X other than Cu and Cv, so that

G−X = Cu ∪ Cv ∪
k⋃

i=1

Ci

with the unions above all disjoint unions. If either Cu or Cv are trivial, i.e., Cu = u or Cv = v,
then Gu→v −X = G−X and we may take X ′ = X as in earlier cases. So we assume that Cu and
Cv are non-trivial. Now as in the previous case in Gu→v−X we have u an isolated vertex, but now
the component containing v, all it C ′v, has a very specific structure: C ′v consists of two blocks with
v as the cutvertex, and those blocks are isomorphic to Cu and Cv. Let X ′′ = X ∪ v. Then

Gu→v −X ′′ = Gu→v −X − v = u ∪ (Cu − u) ∪ (Cv − v) ∪
k⋃

i=1

Ci

with the unions above all disjoint unions. Since Cu, Cv are non-trivial, ω(G−X)+1 = ω(Gu→v−X ′′)
as required. In addition, clearly we have c(Gu→v −X ′′) ≤ c(G −X), and since |X ′′| = |X ∪ v| =
|X|+ 1, we have |X ′′|+ c(Gu→v −X ′′) ≤ |X|+ c(G−X) + 1 as required, completing the case and
the proof.

The previous theorem allows us to say more about compression’s general effects on integrity,
tenacity, and k-component order connectivity, and also permits us to determine compression’s
effects on rupture degree. For integrity and k-component order connectivity we have the following.
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Theorem 3.2. Let G be a graph with u, v ∈ V (G). Then

I(Gu→v) ≤ I(G) + 1

and
κ(k)c (Gu→v) ≤ κ(k)c (G) + 1

for any k. Furthermore if equality holds for the first (resp. second) inequality, then v is a member
of some I-set (resp. failure set for k) of Gu→v.

Proof. Let X be an I-set of G, so that I(G) = |X| − c(G − X). By Theorems 2.2 and 3.1 there
exists either a set X ′ such that |X ′| = |X| and c(Gu→v −X ′) ≤ c(G −X), or a set X ′′ such that
|X ′′| = |X|+ 1 and c(Gu→v −X ′′) ≤ c(G−X). If the former then

I(Gu→v) ≤ |X ′|+ c(Gu→v −X ′) ≤ |X|+ c(G−X) = I(G)

and if the latter then

I(Gu→v) ≤ |X ′′|+ c(Gu→v −X ′) ≤ |X|+ c(G−X) + 1 = I(G) + 1

and so for all choices of u, v we have I(Gu→v) ≤ I(G) + 1. And similarly if X is a failure set for k
of G, then either k > c(G−X) ≥ c(Gu→v −X ′) or k > c(G−X) ≥ c(Gu→v −X ′′). In the former

case κ
(k)
c (Gu→v) ≤ |X ′| = |X| = κ

(k)
c (G) and in the latter case κ

(k)
c (Gu→v) ≤ |X ′′| ≤ |X| + 1 =

κ
(k)
c (G) + 1, and so for all choices of u, v we have κ

(k)
c (Gu→v) ≤ κ(k)c (G) + 1. Finally, as seen in the

proof of Theorem 3.1, whenever the X ′′ appears it necessarily contains v.

For tenacity, we see that as long as tenacity is sufficiently high then compression behaves
uniformly with respect to choice of vertices.

Theorem 3.3. Let G be a graph such that T (G) ≥ 1, and let u, v ∈ V (G). Then T (Gu→v) ≤ T (G).

Proof. Let X be a T -set of G, so that T (G) = (|X|+ c(G−X))/ω(G−X) ≥ 1, and note that this
implies that

|X|+ c(G−X) + 1

ω(G−X) + 1
≤ |X|+ c(G−X)

ω(G−X)
.

By Theorems 2.2 and 3.1 there exists either a set X ′ such that |X ′| = |X| and c(Gu→v − X ′) ≤
c(G−X) and ω(Gu→v−X ′) ≥ ω(G−X), or a set X ′′ such that |X ′′| = |X|+1 and c(Gu→v−X ′′) ≤
c(G−X) and ω(Gu→v −X ′′) = ω(G−X) + 1. If the former then

T (Gu→v) ≤ |X
′|+ c(Gu→v −X ′)
ω(Gu→v −X ′)

≤ |X|+ c(G−X)

ω(G−X)
= T (G)

and if the latter then, since T (G) ≥ 1,

T (Gu→v) ≤ |X
′′|+ c(Gu→v −X ′′)
ω(Gu→v −X ′′)

≤ |X|+ c(G−X) + 1

ω(G−X) + 1
≤ |X|+ c(G−X)

ω(G−X)
= T (G)

as required.
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The rupture degree of a graph G, denoted r(G), was introduced in [22], and is defined to be

r(G) = max {ω(G−X)− |X| − c(G−X) | X ⊂ V (G) and ω(G−X) > 1} .

We call X ⊂ V (G) an r-set if r(G) = ω(G−X)−|X|− c(G−X). Unusually, and in contrast to the
vulnerability parameters mentioned so far (including the number of spanning trees and all-terminal
reliability), r(G) may take on negative values. In fact, as indicated by the fact that r(Kn) = 1−n,
it is the smaller and negative values of r(G) that indicate “stronger” graphs. Since the calculation
of rupture degree involves the same quantities as the previous parameters we have the following
result, which shows that compression weakens a graph in terms of rupture degree, and in fact does
so for any choice of u, v ∈ V (G).

Theorem 3.4. Let G be a graph with u, v ∈ V (G). Then r(Gu→v) ≥ r(G).

Proof. Let X be an r-set of G, so that r(G) = ω(G − X) − |X| − c(G − X). By Theorems 2.2
and 3.1 there exists either a set X ′ such that |X ′| = |X| and c(Gu→v − X ′) ≤ c(G − X) and
ω(Gu→v −X ′) ≥ ω(G−X), or a set X ′′ such that |X ′′| = |X|+ 1 and c(Gu→v −X ′′) ≤ c(G−X)
and ω(Gu→v −X ′′) = ω(G−X) + 1. If the former then

r(Gu→v) ≥ ω(Gu→v −X ′)− |X ′| − c(Gu→v −X ′) ≥ ω(G−X)− |X| − c(G−X) = r(G)

and if the latter then

r(Gu→v) ≥ ω(Gu→v −X ′′)− |X ′′| − c(Gu→v −X ′′)
≥ (ω(G−X) + 1)− (|X|+ 1)− c(G−X)

= ω(G−X)− |X| − c(G−X)

= r(G)

as required.

4 Threshold and Quasi-Threshold Graphs

Threshold graphs are a well-known and much studied class of graphs and there are many equivalent
ways to define them, see for example [23]. For our purposes, one of the more informative definitions
involves a dominance relation on vertices. We say vertex v dominates vertex u in G if NG[u] ⊆
NG[v], where NG[u] is the closed neighborhood NG[u] = NG(u) ∪ u. A threshold graph is a graph
in which, given any pair of vertices u, v ∈ V (G), either u dominates v or v dominates u.

If Gu→v 6= G then the compression operation takes two vertices u, v ∈ V (G) which do not dom-
inate each other and produces a new graph Gu→v in which v does dominate u. After compression,
then, a graph is “more threshold” and continued application of compression (with different pairs
of vertices) can only increase this. Eventually, continuing the compression operation will result
in a threshold graph, a fact noted originally by Bogdanowicz [6] and by Satyanarayana, Schopp-
mann, and Suffel [25], as well as by a number of authors since [8, 13, 15, 16]. Since compression
decreases spanning trees and all-terminal reliability, it can therefore be concluded [10, 25] that
for any connected graph G there is a connected threshold graph H such that τ(H) ≤ τ(G) and
Relp(H) ≤ Relp(G). In other words, there are threshold graphs that minimize those parameters.
In the same way, Theorem 3.4 implies the following.

9



Theorem 4.1. For any connected graph G, there is a connected threshold graph H with the same
number of vertices and edges such that r(H) ≥ r(G). In other words, there are threshold graphs
that maximize rupture degree.

An interesting question is which particular threshold graphs maximize rupture degree. Another
useful way of defining threshold graphs are as particular kinds of split graphs, graphs whose vertex
sets can be partitioned into two sets, one of which induces a clique and the other of which induces
an independent set. Another way to define a threshold graph is as a split graph in which the
vertices of the independent set have nested neighborhoods [23]. In [5] Boesch et al. conjectured
the form of the particular threshold graph Ln,m that would, for given n = |V (G)| and m = |E(G)|,
achieve the minimum values of τ(G) and Relp(G). Informally, these are obtained by making the
clique as large as possible and then, when connecting the vertices of the independent set to the
clique, making as many degree one vertices as possible. Formally, let k be the least integer such
that m ≥

(
n−k
2

)
+ k. Then Ln,m is the threshold graph consisting of an (n− k)-clique, with k − 1

pendant vertices and one vertex of degree m −
(
n−k
2

)
− k − 1 attached to it. Confirming Boesch’s

conjecture that Ln,m minimizes τ(G) and Relp(G) for all p appears to be difficult. After about 20
years the conjecture was proven correct for τ(G) by Bogdanowicz [8], with the proof requiring a long
and technical optimization argument. The conjecture that the Ln,m graphs minimize all-terminal
reliability remains open.

In a companion paper to this one [19], we showed that compression operates uniformly for the
parameters toughness, edge toughness, binding number, and scattering number (which, like rupture
degree, takes smaller and negative values for “stronger” graphs), and thus that there are threshold
graphs that minimize (or maximize, in the case of scattering numbers) those parameters. We also
conjectured there that the Ln,m graphs are extremal graphs for those parameters. We conjecture
the same is true for rupture degree.

Conjecture 4.2. For any connected G with n vertices and m edges, r(Ln,m) ≥ r(G). In other
words, the graph Ln,m maximizes rupture degree over all connected graphs with n vertices and m
edges.

As the example given in Section 3 shows, however, for the parameters integrity, tenacity, and
k-component order connectivity, compression behaves somewhat differently. For these parameters,
compressions for dG(u, v) = 1 and dG(u, v) = 2 may have different effects, possibly decreasing the
parameters in the first case and possibly increasing them in the second case.

A related class of graphs that may also be defined in terms of a dominance relation on vertices
is the class of quasi-threshold graphs. A quasi-threshold graph is a graph in which, given any
pair of vertices u, v ∈ V (G) such that uv ∈ E(G), either u dominates v or v dominates u. The
class of quasi-threshold graphs properly contains the class of threshold graphs. (For instance the
“bow-tie graph” K1 + 2K2 is quasi-threshold but not threshold.) Much as repeated compression
can eventually result in a threshold graph, repeated compression using different pairs of adjacent
vertices can eventually result in a quasi-threshold graph [15, 16]. As a consequence of this fact and
Theorems 2.3, 2.4, and 2.5, we have the following.

Theorem 4.3. For any graph G, there exists a quasi-threshold graph H such that p(H) ≤ p(G),
where p is any of the parameters integrity, tenacity, or k-component order connectivity for any k.

It is also an interesting question to ask which quasi-threshold graphs minimize these parameters.
Since threshold graphs are a subclass of quasi-threshold graphs, it is possible that threshold graphs
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Figure 3: The graph H from the example of Section 3 on the left, and H after successive compres-
sions from u1, u2, and u3 to v on right. The graph on the right is threshold.

are still the minimizing graphs here as well. In this regard, we revisit our example from Section 3
earlier. Figure 3 shows the original graph H from the example, as well as the graph that results
from successive compressions with u1, u2, and u3 all compressed to v. The graph on the right,
which we will call H ′, is threshold, and it is not difficult to check that T (H ′) = 3/7, which gives
T (H ′) < T (H) < T (Hu→v). Hence tenacity “reverses direction” during the three compressions,
increasing after one compression but then decreasing to a minimum after additional compressions
to a threshold graph. A similar “reversal” happens with integrity, with 3 = I(H ′) = I(H) <
I(Hu→v) = 4. It is also worth noting that the graph H ′, while threshold, is not the threshold
graph L9,12 (which has K4 as a subgraph) and that for integrity, tenacity, and k-component order
connectivity (for any k) we have p(H ′) ≤ p(L9,12), as is also easy to check. Hence if threshold graphs
are indeed extremal for those three parameters, the extremal threshold graphs are not necessarily
the graphs Ln,m.
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