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San José State University
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Abstract

We give sufficient conditions on the vertex degrees of a graph G to guarantee
that G has binding number at least b, for any given b > 0. Our conditions
are best possible in exactly the same way that Chvátal’s well-known degree
condition to guarantee a graph is hamiltonian is best possible.

1 Introduction

We consider only simple graphs without loops or multiple edges. Our terminology

and notation will be standard except as indicated, and a good reference for any

undefined terms or notation is [17]. We mention that for two graphs G, H on

disjoint vertex sets, we will denote their disjoint union by G ∪H and their join by

G + H. Also, we will occasionally use G, rather than V (G), to refer to the set of

vertices of the graph G.

For a positive integer n, an n-sequence (or just a sequence) is an integer sequence

π = (d1, d2, . . . , dn), with 0 ≤ dj ≤ n − 1 for all j. In contrast to [17], we will

usually write the sequence in nondecreasing order, and may make this explicit by

writing π = (d1 ≤ · · · ≤ dn). We will employ the standard abbreviated notation

for sequences, e.g., (4, 4, 4, 4, 4, 5, 5, 6) will be denoted 45 52 61. If π = (d1, . . . , dn)

and π′ = (d′1, . . . , d
′
n) are two n-sequences, we say π′ majorizes π, denoted π′ ≥ π, if

d′j ≥ dj for all j.
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A degree sequence of a graph is any sequence π = (d1, d2, . . . , dn) consisting of the

vertex degrees of the graph. A sequence π is graphical if there exists a graph G

having π as one of its degree sequences, in which case we call G a realization of π.

If P is a graph property (e.g., hamiltonian, k-connected, etc.), we call a graphical

sequence π forcibly P graphical (or just forcibly P ) if every realization of π has

property P .

Historically, the degree sequence of a graph has been used to provide sufficient

conditions for a graph to have certain properties, such as hamiltonian or k-connected.

In particular, sufficient conditions for π to be forcibly hamiltonian were given by

several authors, culminating in the following theorem of Chvátal [9].

Theorem 1.1. Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, with n ≥ 3. If

di ≤ i <
n

2
implies dn−i ≥ n− i, then π is forcibly hamiltonian.

Unlike its predecessors, Chvátal’s theorem has the property that if it does not guar-

antee that π is forcibly hamiltonian because the condition fails for some i <
n

2
,

then π is majorized by π′ = ii (n− i− 1)n−2i (n− 1)i, which has a nonhamiltonian

realization Ki +(Ki∪Kn−2i). As we will see below, this implies that Chvátal’s theo-

rem is the strongest of an entire class of theorems giving sufficient degree conditions

for π to be forcibly hamiltonian.

A few years later, Boesch [5] recast, in the form of Theorem 1.2 below, an earlier

sufficient condition of Bondy [6] for a degree sequence to be forcibly k-connected.

He also showed the condition was strongest in exactly the same way as Chvátal’s

forcibly hamiltonian condition.

Theorem 1.2. Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence with n ≥ 2, and let

1 ≤ k ≤ n− 1. If di ≤ i + k − 2 implies dn−k+1 ≥ n− i, for 1 ≤ i ≤ 1

2
(n− k + 1),

then π is forcibly k-connected.

A method to obtain degree conditions for other graph properties, some as strong as

Theorems 1.1 and 1.2, was described in [7].

A graph property P is called increasing if whenever a graph G has P , so does every

edge-augmented supergraph of G. In particular, “hamiltonian” and “k-connected”

are both increasing graph properties. In the remainder of this paper, the term

“graph property” will always mean an increasing graph property.

Given a graph property P , consider a theorem T which declares certain degree se-

quences to be forcibly P , rendering no decision on the remaining degree sequences.

We call such a theorem T a forcibly P theorem (or just a P theorem). Thus Theo-

rem 1.1 is a forcibly hamiltonian theorem. We call a P theorem T monotone if, for

any two degree sequences π, π′, whenever T declares π forcibly P and π′ ≥ π, then T

declares π′ forcibly P . We call a P theorem T optimal (resp., weakly-optimal) if
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whenever T does not declare π forcibly P , then π has a realization without prop-

erty P (resp., then there exists π′, so that π′ ≥ π and π′ has a realization without

property P ). A P theorem which is both monotone and weakly-optimal is a best

monotone P theorem in the following sense.

Theorem 1.3. Let T , T0 be monotone P theorems, with T0 weakly-optimal. If T

declares a degree sequence π to be forcibly P , then so does T0.

Proof of Theorem 1.3: Suppose to the contrary that there exists a degree se-

quence π that T declares forcibly P , but T0 does not. Since T0 is weakly-optimal,

there exists a degree sequence π′ ≥ π having a realization G′ without property P ; in

particular, T will not declare π′ forcibly P . But if T declares π forcibly P , π′ ≥ π,

and T does not declare π′ forcibly P , then T is not monotone, a contradiction.

�

Chvátal’s hamiltonian theorem (Theorem 1.1) is clearly monotone, and we noted

previously that it is weakly-optimal. So by Theorem 1.3, Chvátal’s theorem is a

best monotone hamiltonian theorem.

More recently, the problem of finding best monotone theorems has been consid-

ered for several other graph properties and parameters; e.g., toughness [1], exis-

tence of a 2-factor [2], independence number [3], chromatic number [3], and edge-

connectivity [4]. In this note we continue this investigation by considering a best

monotone theorem for the binding number of a graph.

Woodall introduced the binding number of a graph G in [18]. Given S ⊆ V (G), let

N(S) ⊆ V (G) denote the neighbor set of S. Let S = {S ⊆ V (G) |S 6= ∅ and N(S) 6=
V (G)}. The binding number of G, denoted bind(G), is defined by

bind(G) = min
S∈S

|N(S)|
|S|

.

A set S ∈ S for which the above minimum is attained will be called a binding set

for G. For b ≥ 0, we call a graph G b-binding if bind(G) ≥ b. Cunningham [10] has

shown that determining bind(G) is tractable.

A number of theorems in the literature guarantee that a graphG has a given property

if bind(G) is bounded below by some value or function. Perhaps the best known such

result is the following result of Woodall, where the constant
3

2
is best possible [18, 19].

Theorem 1.4. If G is a graph with bind(G) ≥ 3

2
, then G is hamiltonian.

Other graph properties that are guaranteed by lower bounds on bind(G) include k-

extendability [8, 15], containing a k-clique [11], and having certain types of factors

[13, 14].
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Our main goal in this paper is to establish a best monotone b-binding theorem for

any b > 0. We do this in the next section, first when 0 < b ≤ 1, and then when

b ≥ 1.

In the final section, we introduce a new perspective about sufficient degree conditions

for graph properties. Suppose a graphical sequence π satisfies some (and thus, by

Theorem 1.3, every) best monotone P theorem for a graph property P . We then call

π best monotone P , denoted π ∈ BM(P ). We consider how best possible structural

implications of the form P1 implies P2 can sometimes be improved, in degree terms,

to π ∈ BM(P ) implies π ∈ BM(P2), where P is a substantially weaker property

than P1.

2 Best Monotone b-Binding Theorems, for b > 0

We begin with the best possible minimum degree condition for a graph to be b-

binding, for any b > 0.

Theorem 2.1. Let b > 0. If a graph G on n ≥ 1 vertices satisfies δ(G) ≥ bn

b+ 1
,

then bind(G) ≥ b.

To see that Theorem 2.1 is best possible, consider G = Kd bn
b+1e−1 +Kb n

b+1c+1. Then

δ(G) =

⌈
bn

b+ 1

⌉
− 1, and taking S = Kb n

b+1c+1, we have

bind(G) ≤ |N(S)|
|S|

=

⌈
bn

b+1

⌉
− 1⌊

n
b+1

⌋
+ 1

<
bn

b+1
n

b+1

= b.

Proof of Theorem 2.1: Let S be a binding set for G. If bind(G) < b, then

|S| > |N(S)|
b

≥ δ(G)

b
. Since |S| > n−δ(G) implies the contradiction N(S) = V (G),

we also have |S| ≤ n− δ(G). But then
δ(G)

b
< |S| ≤ n− δ(G), or δ(G) <

bn

b+ 1
, a

contradiction. �

If δ(G) fails to satisfy the condition in Theorem 2.1, we may still be able to conclude

that G is b-binding by considering the full degree sequence of G. We show this by

presenting the best monotone b-binding theorems below, first when 0 < b ≤ 1

(Theorem 2.2), and then when b ≥ 1 (Theorem 2.3). Each of these theorems is

essentially a collection of conditions designed to block the degree sequences of certain

key edge-maximal not-b-binding graphs. These graphs will be described explicitly

in the paragraphs following the statements of the theorems. The sufficiency of

blocking the degree sequences of just these key graphs is, of course, accomplished
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in the subsequent proofs. A fuller description of this approach for constructing best

monotone theorems can be found in [1].

We first give a best monotone b-binding theorem for 0 < b ≤ 1.

Theorem 2.2. Let 0 < b ≤ 1, and let π = (d1 ≤ · · · ≤ dn) be a graphical

sequence, with n ≥ db+ 1e = 2. If

(i) di ≤ dbie − 1 =⇒ dn−dbie+1 ≥ n− i, for 1 ≤ i ≤
⌊

n

b+ 1

⌋
, and

(ii) db n
b+1c+1 ≥ n−

⌊
n

b+ 1

⌋
,

then π is forcibly b-binding.

Before proving Theorem 2.2, we show that it is best monotone b-binding. It is clearly

monotone, and so by Theorem 1.3, it suffices to show that it is weakly optimal.

If π fails to satisfy condition (i) for some i, consider π′ = (dbie − 1)i(n − i −
1)n−i−dbie+1(n − 1)dbie−1 ≥ π, with realization G′ = Kdbie−1 +

(
Kn−i−dbie+1 ∪Ki

)
.

Taking S = Ki, we find

bind(G′) ≤ |N(S)|
|S|

=
dbie − 1

i
<
bi

i
= b.

Note also that condition (i) for index i explicitly blocks the degree sequence π′.

If π fails to satisfy condition (ii), consider π′ =
(
n−

⌊
n

b+1

⌋
− 1
)b n

b+1c+1
(n−1)n−b n

b+1c−1 ≥
π, with realization G′ = Kn−b n

b+1c−1 +Kb n
b+1c+1. Taking S = Kb n

b+1c+1 we find

bind(G′) ≤ |N(S)|
|S|

=
n−

⌊
n

b+1

⌋
− 1⌊

n
b+1

⌋
+ 1

<
n− n

b+1
n

b+1

= b.

Note that condition (ii) explicitly blocks the degree sequence π′.

Proof of Theorem 2.2: Suppose π satisfies (i) and (ii), but has a realization G

with bind(G) < b. Let S ⊆ V (G) be a binding set forG, so that bind(G) =
|N(S)|
|S|

< b.

Define A
.
= S−N(S), B

.
= N(S)−S, C

.
= S ∩N(S), and D

.
= V (G)− (S ∪N(S)),

so that S = A ∪ C and N(S) = B ∪ C. Clearly, A is an independent set.

Since bind(G) =
|B|+ |C|
|A|+ |C|

< b ≤ 1, we have |A| > |B|, and so A 6= ∅. Also,

N(A) ⊆ B, and so N(A) 6= V (G). If |C| > 0, then

bind(G) ≤ |N(A)|
|A|

≤ |B|
|A|

<
|B|+ |C|
|A|+ |C|

= bind(G),

a contradiction. Hence, C = ∅ and bind(G) =
|B|
|A|

.
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We consider two cases.

Case 1. |A| ≥
⌊

n

b+ 1

⌋
+ 1.

Then db n
b+1c+1 ≤ d|A| ≤ |B| = n − |A| − |D| ≤ n −

⌊
n

b+1

⌋
− 1, contradicting

condition (ii).

Case 2. |A| ≤
⌊

n

b+ 1

⌋
.

Since
|B|
|A|

= bind(G) < b, we have n− |D| = |A|+ |B| < |A|+ b|A| ≤ n, or D 6= ∅.

So each vertex in A has degree at most n−|A|− |D| ≤ n−|A|−1, while each vertex

in D has degree at most |B|+ |D| − 1 = n− |A| − 1. Thus d|A|+|D| ≤ n− |A| − 1.

Set i
.
= |A|, so 1 ≤ i ≤

⌊
n

b+ 1

⌋
. Since |B| < b|A|, we have |B| ≤ db|A|e − 1. But

then

di = d|A| ≤ |B| ≤ db|A|e − 1 = dbie − 1,

while

dn−dbie−1 = dn−db|A|e+1 ≤ dn−|B| = d|A|+|D| ≤ n− |A| − 1 = n− i− 1,

contradicting condition (i). �

Next, we give a best monotone b-binding theorem for b ≥ 1, which is identical to

Theorem 2.2 when b = 1.

Theorem 2.3. Let b ≥ 1, and let π = (d1 ≤ · · · ≤ dn) be a graphical sequence,

with n ≥ db+ 1e. If

(i) di ≤ n−
⌊
n− i
b

⌋
− 1 =⇒ dbn−i

b c+1 ≥ n− i, for 1 ≤ i ≤
⌊

n

b+ 1

⌋
, and

(ii) db n
b+1c+1 ≥ n−

⌊
n

b+ 1

⌋
,

then π is forcibly b-binding.

Before proving Theorem 2.3, we show that it is best monotone b-binding. Clearly it

is monotone, and so, by Theorem 1.3, it suffices to show that it is weakly optimal.

If π fails to satisfy condition (i) for some i, consider π′ =
(
n−

⌊
n−i

b

⌋
− 1
)i

(n− i−
1)b

n−i
b c−i+1(n−1)n−bn−i

b c−1 ≥ π, with realizationG′ = Kn−bn−i
b c−1+

(
Kbn−i

b c−i+1 ∪Ki

)
.

Taking S =
(
Kbn−i

b c−i+1 ∪Ki

)
, we find

bind(G′) ≤ |N(S)|
|S|

=
n− i⌊

n−i
b

⌋
+ 1

<
n− i(

n−i
b

) = b.
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Note that condition (i) for index i explicitly blocks the degree sequence π′.

If π fails to satisfy condition (ii), we may argue exactly as when condition (ii) failed

in Theorem 2.2.

To prove Theorem 2.3, we need the following.

Lemma 2.4. If π satisfies conditions (i) and (ii) in Theorem 2.3 for some b ≥ 1,

then π is forcibly 1-binding.

Proof of Lemma 2.4: To show π is forcibly 1-binding, it suffices, by Theorem 2.2

with b = 1, to show

(1) di ≤ i− 1 =⇒ dn−i+1 ≥ n− i, for 1 ≤ i ≤
⌊n

2

⌋
, and

(2) dbn
2 c+1 ≥ n−

⌊n
2

⌋
,

For (1), if 1 ≤ i ≤
⌊

n

b+ 1

⌋
, then notice that by condition (i) in Theorem 2.3,

di ≤ i − 1 ≤ n −
⌊
n− i
b

⌋
− 1 implies dn+i−1 ≥ dbn−i

b c+1 ≥ n − i, which is (1).

However, if

⌊
n

b+ 1

⌋
+ 1 ≤ i ≤

⌊n
2

⌋
, then condition (ii) in Theorem 2.3 gives

di ≥ db n
b+1c+1 ≥ n−

⌊
n

b+ 1

⌋
≥ n− (i− 1) > i,

and (1) is vacuously satisfied.

For (2), note that by condition (ii) in Theorem 2.3 we have

dbn
2 c+1 ≥ db n

b+1c+1 ≥ n−
⌊

n

b+ 1

⌋
≥ n−

⌊n
2

⌋
,

which is (2). Thus, π is forcibly 1-binding. �

Proof of Theorem 2.3: Suppose π satisfies (i) and (ii), but has a realization G

with bind(G) < b. Let S ⊆ V (G) be a largest binding set in G, so that bind(G) =
|N(S)|
|S|

< b. Partition V (G) into A
.
= S − N(S), B

.
= N(S) − S, C

.
= S ∩ N(S),

and D
.
= V (G)− (S ∪N(S)), so that S = A ∪ C and N(S) = B ∪ C. Clearly, A is

an independent set.

Claim. |C| ≥ |D|

Proof of Claim: Suppose |D| > |C|. Define S ′
.
= A ∪ D, so N(S ′) ⊆ B ∪ D.

Since N(S) = B ∪ C 6= V (G), we have S ′ 6= ∅. Since S = A ∪ C 6= ∅, we also have

N(S ′) 6= V (G). Therefore, since |D| > |C| and π is forcibly 1-binding,

1 ≤ bind(G) ≤ |N(S ′)|
|S ′|

≤ |B|+ |D|
|A|+ |D|

≤ |B|+ |C|
|A|+ |C|

=
|N(S)|
|S|

= bind(G),
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and S ′ is a binding set in G. However, |D| > |C| implies |S ′| > |S|, contradicting

our choice of S. This proves the Claim. �

Note that each vertex in A has degree at most |B| = n− (|A|+ |C|+ |D|), and each

vertex in D has degree at most |B|+ |D| − 1 = n− (|A|+ |C|+ 1). Therefore, since

|A|+ |D| ≥ 1,

d|A|+|D| ≤ n− (|A|+ |C|) ≤ n− (|A|+ |D|). (1)

Also, each vertex in C has degree at most |B|+ |C| − 1 = n− (|A|+ |D|+ 1), so

d|A|+|C| ≤ n− (|A|+ |D|+ 1), if |C| ≥ 1. (2)

Case 1. |A|+ |D| ≥
⌊

n

b+ 1

⌋
+ 1.

By (1), db n
b+1c+1 ≤ d|A|+|D| ≤ n − (|A| + |D|) < n −

⌊
n

b+ 1

⌋
, contradicting condi-

tion (ii).

Case 2. |A|+ |D| ≤
⌊

n

b+ 1

⌋
.

Note that |C| ≥ 1 (else |D| = |C| = 0 by the Claim, and b >
|N(S)|
|S|

=
n− |A|
|A|

,

or |A| > n

b+ 1
, contradicting the Case).

Since
|N(S)|
|S|

< b, we have

|A|+ |C| = |S| > |N(S)|
b

=
n− (|A|+ |D|)

b
,

or

|A|+ |C| ≥
⌊
n− (|A|+ |D|)

b

⌋
+ 1. (3)

Set i
.
= |A|+ |D|, so 1 ≤ i ≤

⌊
n

b+1

⌋
. By (1) and (3),

di = d|A|+|D| ≤ n− (|A|+ |C|) ≤ n−
⌊
n− (|A|+ |D|)

b

⌋
− 1 = n−

⌊
n− i
b

⌋
− 1,

while by (2) and (3),

dbn−i
b c+1 = dbn−(|A|+|D|)

b c+1
≤ d|A|+|C| < n− (|A|+ |D|) = n− i.

This contradicts condition (i). �
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3 Best Monotone Degree Improvement of

Theorem 1.4

If a graphical sequence π satisfies a best monotone P theorem for a graph property

P , we call π best monotone P , and denote this by π ∈ BM(P ). For example,

π = 46 ∈ BM(hamiltonian), since π satisfies Theorem 1.1 (Chvátal’s theorem).

Our goal in this section is to see how implications of the form π ∈ BM(P1) implies

π ∈ BM(P2) reflect, and occasionally improve, implications of the form P1 implies

P2.

Let P1, P2 be two graph properties. If P1 implies P2 and π ∈ BM(P1), then π is

forcibly P2. However, we can say more.

Theorem 3.1. If P1, P2 are graph properties such that P1 implies P2, then for any

graphical sequence π we have π ∈ BM(P1) implies π ∈ BM(P2).

Proof of Theorem 3.1: Suppose to the contrary that π ∈ BM(P1), but π /∈ BM(P2).

Then there exists a graphical sequence π′ ≥ π having a realization G′ without prop-

erty P2. Since P1 implies P2, G
′ cannot have property P1. However, π ∈ BM(P1)

and π′ ≥ π together imply that π′ ∈ BM(P1), and thus every realization of π′ has

P1, a contradiction. �

Taking P1 to be ‘
3

2
-binding’ and P2 to be ‘hamiltonian’, we know P1 implies P2 by

Theorem 1.4. So by Theorem 3.1

π ∈ BM
(

3

2
− binding

)
implies π ∈ BM(hamiltonian). (4)

We may think of (4) as a best monotone degree analogue of Theorem 1.4.

As we have noted, the constant
3

2
in Theorem 1.4 is best possible. However, the

constant
3

2
in (4) can be substantially improved.

Theorem 3.2. Let b > 1. Then for any graphical sequence π, π ∈ BM(b-binding)

implies π ∈ BM(hamiltonian).

Note that every hamiltonian graph is necessarily 1-binding, and thus by Theorem 3.1,

π ∈ BM(hamiltonian) implies π ∈ BM(1-binding). On the other hand, the converse

does not hold. To see this consider

π =
(⌊n

2

⌋
− 1
)bn

2 c−1 (
n−

⌊n
2

⌋)n−2bn
2 c+2

(n− 1)b
n
2 c−1
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with realization Kbn
2 c−1 +

(
Kbn

2 c−1 ∪Kn−2bn
2 c+2

)
. It is easily verified that π ∈

BM(1-binding), while π /∈ BM(hamiltonian) since π fails to satisfy Theorem 1.1

for i =
⌊n

2

⌋
− 1. Thus b > 1 in Theorem 3.2 is best possible.

Proof of Theorem 3.2: Suppose π ∈ BM(b-binding) for some b > 1 and di ≤ i

for some i <
n

2
. We will show that dn−i ≥ n − i, so that π satisfies Theorem 1.1,

and thus π ∈ BM(hamiltonian). We consider two cases.

Case 1. i ≤
⌊

n

b+ 1

⌋
.

If i ≥ n −
⌊
n− i
b

⌋
≥ n − n− i

b
, then i ≥ n since b > 1, a contradiction. Hence

i ≤ n−
⌊
n− i
b

⌋
− 1. Then di ≤ i ≤ n−

⌊
n− i
b

⌋
− 1 for i ≤

⌊
n

b+ 1

⌋
, and thus by

Theorem 2.3(i),

dn−i ≥ dn−(n−bn−i
b c−1) = dbn−i

b c+1 ≥ n− i,

as required.

Case 2.

⌊
n

b+ 1

⌋
+ 1 ≤ i <

n

2
.

Then

db n
b+1c+1 ≤ di ≤ i <

n

2
= n− n

2
< n−

⌊
n

b+ 1

⌋
,

which contradicts Theorem 2.3(ii). Therefore, no such i exists with di ≤ i. �

We call a graph G on n ≥ 3 vertices pancyclic if G contains an l-cycle for each l

such that 3 ≤ l ≤ n. In [16], Shi generalized Theorem 1.4 as follows.

Theorem 3.3. If G is a graph with bind(G) ≥ 3

2
, then G is pancyclic.

Since the constant
3

2
is best possible in Theorem 1.4, it is a fortiori best possible in

Theorem 3.3.

We have the following best monotone condition for a degree sequence to be forcibly

pancyclic.

Theorem 3.4. Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, with n ≥ 3. If

(1) di ≤ i <
n

2
=⇒ dn−i ≥ n− i, and

(2) dn ≥
n

2
+ 1, if n is even,

then π is forcibly pancyclic.
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Before proving Theorem 3.4, we show that it is best monotone pancyclic. It is

clearly monotone, and so by Theorem 1.3, it suffices to show it is weakly optimal. If

(1) fails for some i <
n

2
, then π is majorized by the degrees of the nonhamiltonian

(nonpancyclic) graph Ki + (Ki ∪ Kn−2i). If (2) fails, then π is majorized by the

degrees of the bipartite (nonpancyclic) graph Kn
2

, n
2
.

Proof of Theorem 3.4: In [12] it was shown that if π satisfies (1), then every

realization of π is either pancyclic or bipartite. However, if a realization of π were

bipartite, and necessarily hamiltonian by Theorem 1.1, then n is even and dn ≤
n

2
,

contradicting (2). �

We now prove a theorem which relates to Theorem 3.3 precisely as Theorem 3.2

relates to Theorem 1.4.

Theorem 3.5. Let b > 1. Then for any graphical sequence π, π ∈ BM(b-binding)

implies π ∈ BM(pancyclic).

Proof of Theorem 3.5: If π ∈ BM(b-binding) with b > 1, then π ∈ BM(hamiltonian)

by Theorem 3.2. Thus π satisfies Theorem 1.1, which is (1) in Theorem 3.4. So it

suffices to show π also satisfies (2) in Theorem 3.4.

Since b > 1 and π ∈ BM(b-binding), π satisfies condition (ii) in Theorem 2.3. Thus

we obtain

dn ≥ db n
b+1c+1 ≥ n−

⌊
n

b+ 1

⌋
≥ n− n

b+ 1
> n− n

2
=
n

2
.

So, dn ≥
n

2
+ 1 when n is even, which is (2) in Theorem 3.4. �

It would be interesting to explore other graph properties P1, P2 such that P1 implies

P2 is best possible, but the corresponding relation π ∈ BM(P1) implies π ∈ BM(P2),

guaranteed by Theorem 3.1, can be improved as above.

Acknowledgement

The authors wish to acknowledge an anonymous referee for significantly simplifying

the proofs in Sections 2.

References

[1] D. Bauer, H. Broersma, J. van den Heuvel, N. Kahl, and E. Schmeichel. Tough-

ness and vertex degrees, submitted.

11



[2] D. Bauer, H. Broersma, J. van den Heuvel, N. Kahl, and E. Schmeichel. De-

gree sequences and the existence of k-factors. Graphs and Combinatorics (to

appear).

[3] D. Bauer, S.L. Hakimi, N. Kahl, and E. Schmeichel. Best monotone degree

bounds for various graph parameters. Congr. Numer. 192 (2008), 75–83.

[4] D. Bauer, S.L. Hakimi, N. Kahl, and E. Schmeichel. Sufficient degree conditions

for k-edge-connectedness of a graph. Networks 54 (2009), no. 2, 95–98.

[5] F. Boesch. The strongest monotone degree condition for n-connectedness of a

graph. J. Comb. Theory Ser. B 16 (1974), 162–165.

[6] J.A. Bondy. Properties of graphs with constraints on degrees. Studia Sci. Math.

Hungar. 4 (1969), 473–475.
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