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Abstract

We demonstrate how certain theorems can be improved when
we know the degree sequence of a graph. In particular, let τ(G)
and bind(G) be the toughness and binding number, respectively, of
a graph G. We show how a recent best possible lower bound on
τ(G) in terms of bind(G), when bind(G) ≥ 2, can be improved when
combined with a knowledge of the degree sequence of G.

1 Introduction

A degree sequence of a graph G is a list of the degrees of all the vertices of
G, with repetition if multiple vertices have the same degree. In this paper
the degree sequences are in nondecreasing order. If π is a degree sequence
of length n, then we typically denote it as π = (d1 ≤ d2 ≤ · · · ≤ dn). At
times we may utilize exponents to indicate the number of times a degree
appears, e.g., π = (2, 2, 2, 2, 4) = 2441. Given two sequences π = (d1 ≤
d2 ≤ · · · ≤ dn) and π′ = (d′1 ≤ d′2 ≤ · · · ≤ d′n), we say that π′ majorizes π,
denoted π′ ≥ π, if d′i ≥ di for all i. A sequence π = (d1 ≤ d2 ≤ · · · ≤ dn) is
a graphical sequence if there exists a graph G with π as its degree sequence,
and we then call G a realization of π. A graphical sequence π can have
more than one distinct realization. If every realization of π has property
P , we say that π is forcibly P . For example, the graphical sequence π = 36

is forcibly hamiltonian.
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Historically, the degree sequence of a graph has been used to provide suffi-
cient conditions for a graph to have certain properties, such as hamiltonicity
or k-connectedness. In particular, sufficient conditions for π to be forcibly
hamiltonian were given by several authors, culminating in the following
theorem of Chvátal [10].

Theorem 1.1. Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, with
n ≥ 3. If di ≤ i < n

2 =⇒ dn−i ≥ n− i, then π is forcibly hamiltonian.

Unlike its predecessors, Chvátal’s theorem has the property that if it does
not guarantee that π is forcibly hamiltonian because the condition fails for
some i < n

2 , then π is majorized by π′ = ii (n−i−1)n−2i (n−1)i, which has

a nonhamiltonian realization Ki + (Ki ∪Kn−2i). As we will see below, this
implies that Chvátal’s theorem is the strongest of an entire class of theorems
giving sufficient degree conditions for π to be forcibly hamiltonian.

A few years later, Boesch [7] recast, in the form of Theorem 1.2 below, an
earlier sufficient condition of Bondy [8] for a degree sequence to be forcibly
k-connected. He also showed the condition was strongest in exactly the
same sense as Chvátal’s forcibly hamiltonian condition.

Theorem 1.2. Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence with
n ≥ 2, and let 1 ≤ k ≤ n − 1. If di ≤ i + k − 2 =⇒ dn−k+1 ≥ n − i, for
1 ≤ i ≤ 1

2 (n− k + 1), then π is forcibly k-connected.

A method to obtain degree conditions for other graph properties, some as
strong as Theorems 1.1 and 1.2, was described in [9].

A graph property P is called ancestral if whenever a graph G has P , so
does every edge-augmented supergraph of G. In particular, “hamiltonian”
and “k-connected” are both ancestral graph properties. In the remainder of
this paper, the term “graph property” will always mean an ancestral graph
property.

Given a graph property P , consider a theorem T which declares certain
degree sequences to be forcibly P , rendering no decision on the remaining
degree sequences. We call such a theorem T a forcibly P theorem (or just a
P theorem). Thus Theorem 1.1 is a forcibly hamiltonian theorem. We call
a P theorem T monotone if, for any two degree sequences π, π′, whenever T
declares π forcibly P and π′ ≥ π, then T declares π′ forcibly P . We call a P
theorem T optimal (resp., weakly optimal) if whenever T does not declare π
forcibly P , then π has a realization without property P (resp., then there
exists π′, so that π′ ≥ π and π′ has a realization without property P ).
In view of the following result, a P theorem which is both monotone and
weakly optimal is called a best monotone P theorem.
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Theorem 1.3. Let T , T0 be monotone P theorems, with T0 weakly op-
timal. If T declares a degree sequence π to be forcibly P , then so does T0.

Proof. Suppose to the contrary that there exists a degree sequence π that T
declares forcibly P , but T0 does not. Since T0 is weakly optimal, there exists
a degree sequence π′ ≥ π having a realization G′ without property P ; in
particular, T will not declare π′ forcibly P . But if T declares π forcibly P ,
π′ ≥ π, and T does not declare π′ forcibly P , then T is not monotone, a
contradiction. �

Theorem 1.1 is clearly monotone, and in [9] it is shown that it is weakly
optimal. Thus Theorem 1.1 is best monotone with respect to the property
of hamiltonicity.

More recently, the problem of finding best monotone theorems has been
considered for several other graph properties and parameters; e.g., tough-
ness [1], existence of a 2-factor [2], edge-connectivity [3], independence num-
ber [4], chromatic number [4], and binding number [6].

The main result of this paper concerns the graph parameters toughness
and binding number. Chvátal introduced the notion of the toughness of a
graph in [10]. Let ω(G) denote the number of components of a graph G.
For t ≥ 0, we call G t-tough if t · ω(G−X) ≤ |X| for every X ⊆ V (G) with
ω(G−X) ≥ 2. The toughness of G, denoted τ(G), is the maximum t ≥ 0
for which G is t-tough, so that

τ(G) = min

{
|X|

ω(G−X)

∣∣∣∣X ⊂ V (G) and ω(G−X) ≥ 2

}
.

By convention, τ(Kn) := n− 1. If G is not complete, we call X ⊆ V (G) a
tough set of G if ω(G−X) ≥ 2 and τ(G) = |X|/ω(G−X).

In [11], Woodall introduced the notion of the binding number of a graph
G. If S ⊆ V (G), let N(S) denote the set of neighbors of S in G, including
any vertices of S that have neighbors in S. For b ≥ 0, we call G b-binding
if b|S| ≤ |N(S)| for all S ⊆ V (G) with N(S) 6= V (G). The binding number
of G, denoted bind(G), is the maximum b ≥ 0 such that G is b-binding.
Thus,

bind(G) = min

{
|N(S)|
|S|

∣∣∣∣ ∅ 6= S ⊆ V (G), N(S) 6= V (G)

}
.

In particular, bind(Kn) = n − 1. We call S ⊆ V (G) a binding set of G if
N(S) 6= V (G) and bind(G) = |N(S)|/|S|.
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2 Improvements in a Best Monotone Sense

If a graphical sequence π satisfies some (and thus, by Theorem 1.3, ev-
ery) best monotone P theorem for a graph property P , we call π best
monotone P , and denote this by π ∈ BM(P ). For example, π = 46 ∈
BM(hamiltonian), since π satisfies Theorem 1.1 (Chvátal’s theorem). We
now explore how implications of the form π ∈ BM(P1) =⇒ π ∈ BM(P2)
reflect, and occasionally improve, implications of the form P1 =⇒ P2.

Let P1, P2 be two graph properties. If P1 =⇒ P2 and π ∈ BM(P1), then π
is forcibly P2. However, we can say more.

Theorem 2.1. If P1, P2 are graph properties such that P1 =⇒ P2, then
for every graphical sequence π, π ∈ BM(P1) =⇒ π ∈ BM(P2).

Proof. Suppose to the contrary that π ∈ BM(P1) but π /∈ BM(P2). Then
there exists a graphical sequence π′ ≥ π having a realization G′ without
property P2. Since P1 =⇒ P2, G′ cannot have property P1. However,
π ∈ BM(P1) and π′ ≥ π, which together imply that π′ ∈ BM(P1), and thus
every realization of π′ has P1, a contradiction. �

As an example of the above, consider the following theorem of Woodall [11].

Theorem 2.2. If G is a graph with bind(G) ≥ 3
2 , then G is hamiltonian.

A best monotone theorem for the property of b-binding, for b ≥ 1, is given
below as it appears in [6].

Theorem 2.3. Let b ≥ 1, and let π = (d1 ≤ · · · ≤ dn) be a graphical
sequence, with n ≥ db+ 1e. If

(i) dj ≤ n−
⌊
n−j
b

⌋
− 1 =⇒ dbn−j

b c+1 ≥ n− j, for 1 ≤ j ≤
⌊

n
b+1

⌋
, and

(ii) db n
b+1c+1 ≥ n−

⌊
n

b+1

⌋
,

then π is forcibly b-binding.

Taking P1 to be ‘ 32 -binding’ and P2 to be ‘hamiltonian’, we know P1 =⇒ P2

by Theorem 2.2. So by Theorem 2.1

π ∈ BM
(
3
2 -binding

)
=⇒ π ∈ BM(hamiltonian). (1)

In other words, if π satisfies the conditions of Theorem 2.3 when b = 3/2,
then π is guaranteed to satisfy the conditions of Theorem 1.1. We may
think of (1) as a best monotone degree analogue of Theorem 2.2.

4



It is well known that the constant 3/2 in Theorem 2.2 is best possible.
However, in [6] it is shown that the constant 3/2 in (1) can be substantially
improved.

Theorem 2.4. Let b > 1. Then for any graphical sequence π, π ∈
BM(b-binding) =⇒ π ∈ BM(hamiltonian).

It is also shown in [6] that the condition b > 1 in Theorem 2.4 is best
possible. To see this, consider

π =
(⌊n

2

⌋
− 1
)bn

2 c−1 (
n−

⌊n
2

⌋)n−2bn
2 c+2

(n− 1)b
n
2 c−1

with realization Kbn
2 c−1 +

(
Kbn

2 c−1 ∪Kn−2bn
2 c+2

)
. It is easily verified

that π ∈ BM(1-binding), while π /∈ BM(hamiltonian) since π fails to satisfy
Theorem 1.1 for i =

⌊
n
2

⌋
− 1.

Consider a theorem T1 of the form P1 =⇒ P2, where P1 and P2 are two
graph properties. We call a theorem T2 an improvement of T1 in a best
monotone sense if T2 has the form π ∈ BM(P ′1) =⇒ π ∈ BM(P ′2), where
P1 =⇒ P ′1, P ′2 =⇒ P2, and either P ′1 6=⇒ P1 or P2 6=⇒ P ′2. Thus Theo-
rem 2.4 is an improvement of Theorem 2.2 in a best monotone sense. We
are especially interested in finding improvements of T1 in a best monotone
sense when T1 is known to be best possible, e.g., as in Theorem 2.2.

Our goal for the remainder of this section is to provide an improvement in
a best monotone sense of Theorem 2.5 below.

Theorem 2.5. [5, Theorem 1.7] Let G be a graph with bind(G) ≥ 2.
Then

τ(G) ≥


3/2 if bind(G) = 2,

2 if bind(G) = 9/4 or 2 + 1/(2m− 1) for some m ≥ 2,

2 + 1/m if bind(G) = 2 + 2/(2m− 1) for some m ≥ 2,

bind(G) otherwise.

Moreover, these bounds are sharp for every possible value of bind(G) ≥ 2.

Our improvement of Theorem 2.5 in a best monotone sense requires a best
monotone theorem for toughness. This is given below as it appears in [1].

Theorem 2.6. Let t ≥ 1, and let π = (d1 ≤ · · · ≤ dn) be a graphical
sequence, with n ≥ dte+ 2. If

dbi/tc ≤ i =⇒ dn−i ≥ n− bi/tc, for t ≤ i <
tn

t+ 1
,

then π is forcibly t-tough.
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We now derive the following improvement of Theorem 2.5 in a best mono-
tone sense.

Theorem 2.7. Let b ≥ 2, and let π = (d1 ≤ · · · ≤ dn) be a graphical
sequence. Then π ∈ BM(b-binding) =⇒ π ∈ BM(b-tough).

Proof. Assume π ∈ BM(b-binding) for some b ≥ 2. It is proved in [6] that
Theorem 2.3 is a best monotone theorem for the property of b-binding; that
is, it characterizes the set BM(b-binding). Thus π must satisfy (i) and (ii)
of Theorem 2.3.

Assume there exists i, with b ≤ i < bn
b+1 , such that db i

bc ≤ i. Define j :=⌊
i
b

⌋
, so that 1 ≤ j ≤

⌊
n

b+1

⌋
. Our goal is to show that dn−i ≥ n−j, and thus

π satisfies the hypotheses of Theorem 2.6 with t = b, i.e., π ∈ BM(b-tough).

Case 1. j =

⌊
n

b+ 1

⌋
.

Since j ≤ i
b <

n
b+1 , it follows that n

b+1 /∈ Z and

i ≤
⌊
bn

b+ 1

⌋
=

⌊
n− n

b+ 1

⌋
= n−

⌊
n

b+ 1

⌋
− 1. (2)

By (2) and Theorem 2.3(ii), it follows that

dn−i ≥ dn−b bn
b+1c = db n

b+1c+1 ≥ n−
⌊

n

b+ 1

⌋
= n− j.

Case 2. 1 ≤ j ≤
⌊

n

b+ 1

⌋
− 1.

In this case we will prove that

i ≤ n−
⌊
n− j
b

⌋
− 1. (3)

Together with Theorem 2.3(i) and the fact that dj = db i
bc ≤ i, this will

imply that dn−i ≥ dbn−j
b c+1 ≥ n− j, as required. Thus it suffices to prove

(3).

Case 2a.
bn

b+ 1
− 1 < i <

bn

b+ 1
.
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Then i =
⌊

bn
b+1

⌋
and bn

b+1 /∈ Z. Since bn
b+1 = n− n

b+1 , it follows that n
b+1 /∈ Z

and (2) holds with equality. Also, i
b >

n
b+1 −1, and so, by the hypothesis of

Case 2, j =
⌊

n
b+1

⌋
−1. Since (2) holds with equality, i = n−j−2 ≥ n−j−b,

so that ⌊
n− j
b

⌋
≤
⌊
i+ b

b

⌋
= j + 1 = n− i− 1.

This proves (3) in this case.

Case 2b. i ≤ bn

b+ 1
− 1.

Then (b2 − 1)(i+ 1) < b(b− 1)n, and b < b2 − 1 since b ≥ 2, and so

bi− j < bi− i

b
+ 1 =

(b2 − 1)i+ b

b
<

(b2 − 1)(i+ 1)

b
< (b− 1)n.

Thus i < (b−1)n+j
b = n− n−j

b . Since i and n are both integers, (3) holds in
this case too. �

We conclude by showing that the lower bound of 2 for b in Theorem 2.7 is
best possible. To see this, consider the degree sequence

π = (2m− 3)m−2(2m− 2)2(3m− 4)2m−3,

for m ≥ 2, which has realization G = K2m−3 +
(
K2 ∪Km−2

)
.

Claim. π ∈ BM (b-binding) and π /∈ BM (b-tough), for b =
2m− 1

m
.

Proof. Let b = 2m−1
m and note that n = 3m− 3. Thus⌊

n

b+ 1

⌋
=

⌊
m(3m− 3)

3m− 1

⌋
=

⌊
3m(m− 1)

3m− 1

⌋
= m− 1 +

⌊
m− 1

3m− 1

⌋
= m− 1,

and
bn

b+ 1
=

(2m− 1)(3m− 3)

3m− 1
= 2m− 3 +

2m

3m− 1
.

We first show that π satisfies the hypotheses of Theorem 2.3. Note that
the range on j in Theorem 2.3(i) is 1 ≤ j ≤ m − 1. If j ≤ m − 2, then
n− j ≥ 2m− 1 and

n−
⌊
n− j
b

⌋
− 1 ≤ 3m− 4−

⌊
m(2m− 1)

2m− 1

⌋
= 2m− 4.
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Therefore, dj > n −
⌊
n−j
b

⌋
− 1 since the minimum degree in π is 2m − 3.

Similarly, when j = m− 1 we have

n−
⌊
n− j
b

⌋
− 1 = 2m− 3 < 2m− 2 = dm−1 = dj .

Therefore, π satisfies Theorem 2.3(i) vacuously.

To see that Theorem 2.3(ii) is satisfied, note that

db n
b+1c+1 = dm = 2m− 2 = (3m− 3)− (m− 1) = n−

⌊
n

b+ 1

⌋
.

Therefore, π ∈ BM(b-binding).

On the other hand, τ(G) = 2m−3
m−1 < 2m−1

m = b. Thus π is not forcibly
2m−1

m −tough, and π /∈ BM(b-tough). �

Since such an example exists for every m ≥ 2, we see that 2 is the best
possible lower bound on b for which Theorem 2.7 holds.
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