Improving Theorems in a Best Monotone Sense

D. Bauer ${ }^{\text {a }}$, N. Kahl ${ }^{\text {b }}$, E. Schmeichel ${ }^{\text {c }}$, D. R.Woodall ${ }^{\text {d }}$, M. Yatauro ${ }^{\text {e }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA, dbauer@stevens.edu
b Department of Mathematics and Computer Science, Seton Hall University, South Orange, NJ 07079, USA, Nathan.Kahl@shu.edu
${ }^{\text {c }}$ Department of Mathematics, San José State University, San José, CA 95192, USA, schmeichel@math.sjsu.edu
${ }^{\text {d }}$ School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK, douglas.woodall@nottingham.ac.uk
e Department of Mathematics, Penn State, Brandywine Campus, Media, PA
19063, USA, mry3@psu.edu

Abstract

We demonstrate how certain theorems can be improved when we know the degree sequence of a graph. In particular, let $\tau(G)$ and $\operatorname{bind}(G)$ be the toughness and binding number, respectively, of a graph G. We show how a recent best possible lower bound on $\tau(G)$ in terms of $\operatorname{bind}(G)$, when $\operatorname{bind}(G) \geq 2$, can be improved when combined with a knowledge of the degree sequence of G.

1 Introduction

A degree sequence of a graph G is a list of the degrees of all the vertices of G, with repetition if multiple vertices have the same degree. In this paper the degree sequences are in nondecreasing order. If π is a degree sequence of length n, then we typically denote it as $\pi=\left(d_{1} \leq d_{2} \leq \cdots \leq d_{n}\right)$. At times we may utilize exponents to indicate the number of times a degree appears, e.g., $\pi=(2,2,2,2,4)=2^{4} 4^{1}$. Given two sequences $\pi=\left(d_{1} \leq\right.$ $\left.d_{2} \leq \cdots \leq d_{n}\right)$ and $\pi^{\prime}=\left(d_{1}^{\prime} \leq d_{2}^{\prime} \leq \cdots \leq d_{n}^{\prime}\right)$, we say that π^{\prime} majorizes π, denoted $\pi^{\prime} \geq \pi$, if $d_{i}^{\prime} \geq d_{i}$ for all i. A sequence $\pi=\left(d_{1} \leq d_{2} \leq \cdots \leq d_{n}\right)$ is a graphical sequence if there exists a graph G with π as its degree sequence, and we then call G a realization of π. A graphical sequence π can have more than one distinct realization. If every realization of π has property P, we say that π is forcibly P. For example, the graphical sequence $\pi=3^{6}$ is forcibly hamiltonian.

Historically, the degree sequence of a graph has been used to provide sufficient conditions for a graph to have certain properties, such as hamiltonicity or k-connectedness. In particular, sufficient conditions for π to be forcibly hamiltonian were given by several authors, culminating in the following theorem of Chvátal [10].

Theorem 1.1. Let $\pi=\left(d_{1} \leq \cdots \leq d_{n}\right)$ be a graphical sequence, with $n \geq 3$. If $d_{i} \leq i<\frac{n}{2} \Longrightarrow d_{n-i} \geq n-i$, then π is forcibly hamiltonian.

Unlike its predecessors, Chvátal's theorem has the property that if it does not guarantee that π is forcibly hamiltonian because the condition fails for some $i<\frac{n}{2}$, then π is majorized by $\pi^{\prime}=i^{i}(n-i-1)^{n-2 i}(n-1)^{i}$, which has a nonhamiltonian realization $K_{i}+\left(\overline{K_{i}} \cup K_{n-2 i}\right)$. As we will see below, this implies that Chvátal's theorem is the strongest of an entire class of theorems giving sufficient degree conditions for π to be forcibly hamiltonian.
A few years later, Boesch [7] recast, in the form of Theorem 1.2 below, an earlier sufficient condition of Bondy [8] for a degree sequence to be forcibly k-connected. He also showed the condition was strongest in exactly the same sense as Chvátal's forcibly hamiltonian condition.

Theorem 1.2. Let $\pi=\left(d_{1} \leq \cdots \leq d_{n}\right)$ be a graphical sequence with $n \geq 2$, and let $1 \leq k \leq n-1$. If $d_{i} \leq i+k-2 \Longrightarrow d_{n-k+1} \geq n-i$, for $1 \leq i \leq \frac{1}{2}(n-k+1)$, then π is forcibly k-connected.

A method to obtain degree conditions for other graph properties, some as strong as Theorems 1.1 and 1.2, was described in [9].
A graph property P is called ancestral if whenever a graph G has P, so does every edge-augmented supergraph of G. In particular, "hamiltonian" and " k-connected" are both ancestral graph properties. In the remainder of this paper, the term "graph property" will always mean an ancestral graph property.
Given a graph property P, consider a theorem T which declares certain degree sequences to be forcibly P, rendering no decision on the remaining degree sequences. We call such a theorem T a forcibly P theorem (or just a P theorem). Thus Theorem 1.1 is a forcibly hamiltonian theorem. We call a P theorem T monotone if, for any two degree sequences π, π^{\prime}, whenever T declares π forcibly P and $\pi^{\prime} \geq \pi$, then T declares π^{\prime} forcibly P. We call a P theorem T optimal (resp., weakly optimal) if whenever T does not declare π forcibly P, then π has a realization without property P (resp., then there exists π^{\prime}, so that $\pi^{\prime} \geq \pi$ and π^{\prime} has a realization without property P). In view of the following result, a P theorem which is both monotone and weakly optimal is called a best monotone P theorem.

Theorem 1.3. Let T, T_{0} be monotone P theorems, with T_{0} weakly optimal. If T declares a degree sequence π to be forcibly P, then so does T_{0}.

Proof. Suppose to the contrary that there exists a degree sequence π that T declares forcibly P, but T_{0} does not. Since T_{0} is weakly optimal, there exists a degree sequence $\pi^{\prime} \geq \pi$ having a realization G^{\prime} without property P; in particular, T will not declare π^{\prime} forcibly P. But if T declares π forcibly P, $\pi^{\prime} \geq \pi$, and T does not declare π^{\prime} forcibly P, then T is not monotone, a contradiction.

Theorem 1.1 is clearly monotone, and in [9] it is shown that it is weakly optimal. Thus Theorem 1.1 is best monotone with respect to the property of hamiltonicity.
More recently, the problem of finding best monotone theorems has been considered for several other graph properties and parameters; e.g., toughness [1], existence of a 2-factor [2], edge-connectivity [3], independence number [4], chromatic number [4], and binding number [6].

The main result of this paper concerns the graph parameters toughness and binding number. Chvátal introduced the notion of the toughness of a graph in [10]. Let $\omega(G)$ denote the number of components of a graph G. For $t \geq 0$, we call G t-tough if $t \cdot \omega(G-X) \leq|X|$ for every $X \subseteq V(G)$ with $\omega(G-X) \geq 2$. The toughness of G, denoted $\tau(G)$, is the maximum $t \geq 0$ for which G is t-tough, so that

$$
\tau(G)=\min \left\{\left.\frac{|X|}{\omega(G-X)} \right\rvert\, X \subset V(G) \text { and } \omega(G-X) \geq 2\right\}
$$

By convention, $\tau\left(K_{n}\right):=n-1$. If G is not complete, we call $X \subseteq V(G)$ a tough set of G if $\omega(G-X) \geq 2$ and $\tau(G)=|X| / \omega(G-X)$.
In [11], Woodall introduced the notion of the binding number of a graph G. If $S \subseteq V(G)$, let $N(S)$ denote the set of neighbors of S in G, including any vertices of S that have neighbors in S. For $b \geq 0$, we call G b-binding if $b|S| \leq|N(S)|$ for all $S \subseteq V(G)$ with $N(S) \neq V(G)$. The binding number of G, denoted $\operatorname{bind}(G)$, is the maximum $b \geq 0$ such that G is b-binding. Thus,

$$
\operatorname{bind}(G)=\min \left\{\left.\frac{|N(S)|}{|S|} \right\rvert\, \emptyset \neq S \subseteq V(G), \quad N(S) \neq V(G)\right\}
$$

In particular, $\operatorname{bind}\left(K_{n}\right)=n-1$. We call $S \subseteq V(G)$ a binding set of G if $N(S) \neq V(G)$ and $\operatorname{bind}(G)=|N(S)| /|S|$.

2 Improvements in a Best Monotone Sense

If a graphical sequence π satisfies some (and thus, by Theorem 1.3, every) best monotone P theorem for a graph property P, we call π best monotone P, and denote this by $\pi \in \mathrm{BM}(P)$. For example, $\pi=4^{6} \in$ BM(hamiltonian), since π satisfies Theorem 1.1 (Chvátal's theorem). We now explore how implications of the form $\pi \in \mathrm{BM}\left(P_{1}\right) \Longrightarrow \pi \in \mathrm{BM}\left(P_{2}\right)$ reflect, and occasionally improve, implications of the form $P_{1} \Longrightarrow P_{2}$.
Let P_{1}, P_{2} be two graph properties. If $P_{1} \Longrightarrow P_{2}$ and $\pi \in \mathrm{BM}\left(P_{1}\right)$, then π is forcibly P_{2}. However, we can say more.

Theorem 2.1. If P_{1}, P_{2} are graph properties such that $P_{1} \Longrightarrow P_{2}$, then for every graphical sequence $\pi, \pi \in \operatorname{BM}\left(P_{1}\right) \Longrightarrow \pi \in \operatorname{BM}\left(P_{2}\right)$.

Proof. Suppose to the contrary that $\pi \in \mathrm{BM}\left(P_{1}\right)$ but $\pi \notin \mathrm{BM}\left(P_{2}\right)$. Then there exists a graphical sequence $\pi^{\prime} \geq \pi$ having a realization G^{\prime} without property P_{2}. Since $P_{1} \Longrightarrow P_{2}, G^{\prime}$ cannot have property P_{1}. However, $\pi \in \mathrm{BM}\left(P_{1}\right)$ and $\pi^{\prime} \geq \pi$, which together imply that $\pi^{\prime} \in \mathrm{BM}\left(P_{1}\right)$, and thus every realization of π^{\prime} has P_{1}, a contradiction.

As an example of the above, consider the following theorem of Woodall [11].
Theorem 2.2. If G is a graph with $\operatorname{bind}(G) \geq \frac{3}{2}$, then G is hamiltonian.
A best monotone theorem for the property of b-binding, for $b \geq 1$, is given below as it appears in [6].

Theorem 2.3. Let $b \geq 1$, and let $\pi=\left(d_{1} \leq \cdots \leq d_{n}\right)$ be a graphical sequence, with $n \geq\lceil b+1\rceil$. If

$$
\begin{equation*}
d_{j} \leq n-\left\lfloor\frac{n-j}{b}\right\rfloor-1 \Longrightarrow d_{\left\lfloor\frac{n-j}{b}\right\rfloor+1} \geq n-j, \text { for } 1 \leq j \leq\left\lfloor\frac{n}{b+1}\right\rfloor \text {, and } \tag{i}
\end{equation*}
$$

(ii) $\quad d_{\left\lfloor\frac{n}{b+1}\right\rfloor+1} \geq n-\left\lfloor\frac{n}{b+1}\right\rfloor$,
then π is forcibly b-binding.
Taking P_{1} to be ' $\frac{3}{2}$-binding' and P_{2} to be 'hamiltonian', we know $P_{1} \Longrightarrow P_{2}$ by Theorem 2.2. So by Theorem 2.1

$$
\begin{equation*}
\pi \in \mathrm{BM}\left(\frac{3}{2} \text {-binding }\right) \Longrightarrow \pi \in \mathrm{BM}(\text { hamiltonian }) \tag{1}
\end{equation*}
$$

In other words, if π satisfies the conditions of Theorem 2.3 when $b=3 / 2$, then π is guaranteed to satisfy the conditions of Theorem 1.1. We may think of (1) as a best monotone degree analogue of Theorem 2.2.

It is well known that the constant $3 / 2$ in Theorem 2.2 is best possible. However, in [6] it is shown that the constant $3 / 2$ in (1) can be substantially improved.

Theorem 2.4. Let $b>1$. Then for any graphical sequence $\pi, \pi \in$ $\mathrm{BM}(b-$ binding $) \Longrightarrow \pi \in \mathrm{BM}($ hamiltonian $)$.

It is also shown in [6] that the condition $b>1$ in Theorem 2.4 is best possible. To see this, consider

$$
\pi=\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)^{\left\lfloor\frac{n}{2}\right\rfloor-1}\left(n-\left\lfloor\frac{n}{2}\right\rfloor\right)^{n-2\left\lfloor\frac{n}{2}\right\rfloor+2}(n-1)^{\left\lfloor\frac{n}{2}\right\rfloor-1}
$$

with realization $K_{\left\lfloor\frac{n}{2}\right\rfloor-1}+\left(\overline{K_{\left\lfloor\frac{n}{2}\right\rfloor-1}} \cup K_{n-2\left\lfloor\frac{n}{2}\right\rfloor+2}\right)$. It is easily verified that $\pi \in \mathrm{BM}$ (1-binding), while $\pi \notin \mathrm{BM}$ (hamiltonian) since π fails to satisfy Theorem 1.1 for $i=\left\lfloor\frac{n}{2}\right\rfloor-1$.
Consider a theorem T_{1} of the form $P_{1} \Longrightarrow P_{2}$, where P_{1} and P_{2} are two graph properties. We call a theorem T_{2} an improvement of T_{1} in a best monotone sense if T_{2} has the form $\pi \in \mathrm{BM}\left(P_{1}^{\prime}\right) \Longrightarrow \pi \in \mathrm{BM}\left(P_{2}^{\prime}\right)$, where $P_{1} \Longrightarrow P_{1}^{\prime}, P_{2}^{\prime} \Longrightarrow P_{2}$, and either $P_{1}^{\prime} \nRightarrow P_{1}$ or $P_{2} \nRightarrow P_{2}^{\prime}$. Thus Theorem 2.4 is an improvement of Theorem 2.2 in a best monotone sense. We are especially interested in finding improvements of T_{1} in a best monotone sense when T_{1} is known to be best possible, e.g., as in Theorem 2.2.
Our goal for the remainder of this section is to provide an improvement in a best monotone sense of Theorem 2.5 below.

Theorem 2.5. [5, Theorem 1.7] Let G be a graph with $\operatorname{bind}(G) \geq 2$. Then
$\tau(G) \geq \begin{cases}3 / 2 & \text { if } \operatorname{bind}(G)=2, \\ 2 & \text { if } \operatorname{bind}(G)=9 / 4 \text { or } 2+1 /(2 m-1) \text { for some } m \geq 2, \\ 2+1 / m & \text { if } \operatorname{bind}(G)=2+2 /(2 m-1) \text { for some } m \geq 2, \\ \operatorname{bind}(G) & \text { otherwise. }\end{cases}$
Moreover, these bounds are sharp for every possible value of $\operatorname{bind}(G) \geq 2$.
Our improvement of Theorem 2.5 in a best monotone sense requires a best monotone theorem for toughness. This is given below as it appears in [1].

Theorem 2.6. Let $t \geq 1$, and let $\pi=\left(d_{1} \leq \cdots \leq d_{n}\right)$ be a graphical sequence, with $n \geq\lceil t\rceil+2$. If

$$
d_{\lfloor i / t\rfloor} \leq i \Longrightarrow d_{n-i} \geq n-\lfloor i / t\rfloor, \text { for } t \leq i<\frac{t n}{t+1}
$$

then π is forcibly t-tough.

We now derive the following improvement of Theorem 2.5 in a best monotone sense.

Theorem 2.7. Let $b \geq 2$, and let $\pi=\left(d_{1} \leq \cdots \leq d_{n}\right)$ be a graphical sequence. Then $\pi \in \mathrm{BM}(b$-binding $) \Longrightarrow \pi \in \mathrm{BM}(b-$ tough $)$.

Proof. Assume $\pi \in \mathrm{BM}(b$-binding) for some $b \geq 2$. It is proved in [6] that Theorem 2.3 is a best monotone theorem for the property of b-binding; that is, it characterizes the set $\mathrm{BM}(b$-binding). Thus π must satisfy (i) and (ii) of Theorem 2.3.
Assume there exists i, with $b \leq i<\frac{b n}{b+1}$, such that $d_{\left\lfloor\frac{i}{b}\right\rfloor} \leq i$. Define $j:=$ $\left\lfloor\frac{i}{b}\right\rfloor$, so that $1 \leq j \leq\left\lfloor\frac{n}{b+1}\right\rfloor$. Our goal is to show that $d_{n-i} \geq n-j$, and thus π satisfies the hypotheses of Theorem 2.6 with $t=b$, i.e., $\pi \in \operatorname{BM}(b$-tough $)$.

Case 1. $\quad j=\left\lfloor\frac{n}{b+1}\right\rfloor$.
Since $j \leq \frac{i}{b}<\frac{n}{b+1}$, it follows that $\frac{n}{b+1} \notin \mathbb{Z}$ and

$$
\begin{equation*}
i \leq\left\lfloor\frac{b n}{b+1}\right\rfloor=\left\lfloor n-\frac{n}{b+1}\right\rfloor=n-\left\lfloor\frac{n}{b+1}\right\rfloor-1 . \tag{2}
\end{equation*}
$$

By (2) and Theorem 2.3(ii), it follows that

$$
d_{n-i} \geq d_{n-\left\lfloor\frac{b n}{b+1}\right\rfloor}=d_{\left\lfloor\frac{n}{b+1}\right\rfloor+1} \geq n-\left\lfloor\frac{n}{b+1}\right\rfloor=n-j
$$

Case 2. $1 \leq j \leq\left\lfloor\frac{n}{b+1}\right\rfloor-1$.
In this case we will prove that

$$
\begin{equation*}
i \leq n-\left\lfloor\frac{n-j}{b}\right\rfloor-1 \tag{3}
\end{equation*}
$$

Together with Theorem 2.3(i) and the fact that $d_{j}=d_{\left\lfloor\frac{i}{b}\right\rfloor} \leq i$, this will imply that $d_{n-i} \geq d_{\left\lfloor\frac{n-j}{b}\right\rfloor+1} \geq n-j$, as required. Thus it suffices to prove (3).

Case 2a. $\frac{b n}{b+1}-1<i<\frac{b n}{b+1}$.

Then $i=\left\lfloor\frac{b n}{b+1}\right\rfloor$ and $\frac{b n}{b+1} \notin \mathbb{Z}$. Since $\frac{b n}{b+1}=n-\frac{n}{b+1}$, it follows that $\frac{n}{b+1} \notin \mathbb{Z}$ and (2) holds with equality. Also, $\frac{i}{b}>\frac{n}{b+1}-1$, and so, by the hypothesis of Case 2, $j=\left\lfloor\frac{n}{b+1}\right\rfloor-1$. Since (2) holds with equality, $i=n-j-2 \geq n-j-b$, so that

$$
\left\lfloor\frac{n-j}{b}\right\rfloor \leq\left\lfloor\frac{i+b}{b}\right\rfloor=j+1=n-i-1
$$

This proves (3) in this case.

Case 2b. $\quad i \leq \frac{b n}{b+1}-1$.
Then $\left(b^{2}-1\right)(i+1)<b(b-1) n$, and $b<b^{2}-1$ since $b \geq 2$, and so

$$
b i-j<b i-\frac{i}{b}+1=\frac{\left(b^{2}-1\right) i+b}{b}<\frac{\left(b^{2}-1\right)(i+1)}{b}<(b-1) n .
$$

Thus $i<\frac{(b-1) n+j}{b}=n-\frac{n-j}{b}$. Since i and n are both integers, (3) holds in this case too.

We conclude by showing that the lower bound of 2 for b in Theorem 2.7 is best possible. To see this, consider the degree sequence

$$
\pi=(2 m-3)^{m-2}(2 m-2)^{2}(3 m-4)^{2 m-3}
$$

for $m \geq 2$, which has realization $G=K_{2 m-3}+\left(K_{2} \cup \overline{K_{m-2}}\right)$.

Claim. $\quad \pi \in \mathrm{BM}(b$-binding $)$ and $\pi \notin \mathrm{BM}(b$-tough $)$, for $b=\frac{2 m-1}{m}$.
Proof. Let $b=\frac{2 m-1}{m}$ and note that $n=3 m-3$. Thus

$$
\left\lfloor\frac{n}{b+1}\right\rfloor=\left\lfloor\frac{m(3 m-3)}{3 m-1}\right\rfloor=\left\lfloor\frac{3 m(m-1)}{3 m-1}\right\rfloor=m-1+\left\lfloor\frac{m-1}{3 m-1}\right\rfloor=m-1
$$

and

$$
\frac{b n}{b+1}=\frac{(2 m-1)(3 m-3)}{3 m-1}=2 m-3+\frac{2 m}{3 m-1}
$$

We first show that π satisfies the hypotheses of Theorem 2.3. Note that the range on j in Theorem 2.3(i) is $1 \leq j \leq m-1$. If $j \leq m-2$, then $n-j \geq 2 m-1$ and

$$
n-\left\lfloor\frac{n-j}{b}\right\rfloor-1 \leq 3 m-4-\left\lfloor\frac{m(2 m-1)}{2 m-1}\right\rfloor=2 m-4
$$

Therefore, $d_{j}>n-\left\lfloor\frac{n-j}{b}\right\rfloor-1$ since the minimum degree in π is $2 m-3$. Similarly, when $j=m-1$ we have

$$
n-\left\lfloor\frac{n-j}{b}\right\rfloor-1=2 m-3<2 m-2=d_{m-1}=d_{j}
$$

Therefore, π satisfies Theorem 2.3(i) vacuously.
To see that Theorem 2.3(ii) is satisfied, note that

$$
d_{\left\lfloor\frac{n}{b+1}\right\rfloor+1}=d_{m}=2 m-2=(3 m-3)-(m-1)=n-\left\lfloor\frac{n}{b+1}\right\rfloor .
$$

Therefore, $\pi \in \mathrm{BM}$ (b-binding).
On the other hand, $\tau(G)=\frac{2 m-3}{m-1}<\frac{2 m-1}{m}=b$. Thus π is not forcibly $\frac{2 m-1}{m}$-tough, and $\pi \notin \mathrm{BM}(b$-tough $)$.

Since such an example exists for every $m \geq 2$, we see that 2 is the best possible lower bound on b for which Theorem 2.7 holds.

References

[1] D. Bauer, H. Broersma, J. van den Heuvel, N. Kahl, and E. Schmeichel. Toughness and vertex degrees, J. Graph Theory 72 (2013), 209-219.
[2] D. Bauer, H. Broersma, J. van den Heuvel, N. Kahl, and E. Schmeichel. Degree sequences and the existence of k-factors. Graphs and Combinatorics 28 (2012), 149-166.
[3] D. Bauer, S.L. Hakimi, N. Kahl, and E. Schmeichel. Sufficient degree conditions for k-edge-connectedness of a graph. Networks 54 (2009), no. 2, 95-98.
[4] D. Bauer, S.L. Hakimi, N. Kahl, and E. Schmeichel. Best monotone degree bounds for various graph parameters. Congr. Numer. 192 (2008), 75-83.
[5] D. Bauer, N. Kahl, E. Schmeichel, D. R. Woodall, and M. Yatauro. Toughness and binding number, Discrete Appl. Math. (to appear).
[6] D. Bauer, N. Kahl, E. Schmeichel, and M. Yatauro. Best monotone degree conditions for binding number. Discrete Mathematics 311 (2011), no. 18-19, 2037-2043.
[7] F. Boesch. The strongest monotone degree condition for n connectedness of a graph. J. Comb. Theory Ser. B 16 (1974), 162-165.
[8] J.A. Bondy. Properties of graphs with constraints on degrees. Studia Sci. Math. Hungar. 4 (1969), 473-475.
[9] J.A. Bondy and V. Chvátal. A method in graph theory. Discrete Math. 15 (1976), 111-135.
[10] V. Chvátal. On Hamilton's ideals. J. Combin. Theory Ser. B 12 (1972), 163-168.
[11] D.R. Woodall. The binding number of a graph and its Anderson number. J. Combin. Theory Ser. B 15 (1973), 225-255.

