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Abstract

Given a simple graph G and vertices u, v ∈ V (G), let NG(u) and NG(v) denote the neighbor-
hoods in G of u and v respectively. The compression of G from u to v produces a new graph
Gu→v by, for each x ∈ NG(u)−NG(v)−{v}, removing edges from G of the form ux and replacing
them with corresponding edges of the form vx. Kelmans, and independently Satyanarayana,
Schoppmann, and Suffel, showed that for any graph G and any u, v ∈ V (G), compression from
u to v could not increase, and typically decreased, both the number of spanning trees and the
all-terminal reliability of G. Both the number of spanning trees and all-terminal reliability are
vulnerability parameters, i.e., measures of the strength of a network. We show that a number of
other prominent vulnerability parameters—including vertex connectivity, toughness, scattering
number, edge connectivity, edge toughness, and binding number—are affected by compression
in the same way as number of spanning trees and all-terminal reliability. As a consequence, as
with the number of spanning trees and the all-terminal reliability, threshold graphs are extremal
graphs for all of the vulnerability parameters considered.

1 Introduction

Let G be a graph and let u, v ∈ V (G), and let NG(u) and NG(v) denote the neighborhoods in G
of u and v respectively. The compression of G from u to v produces a new graph Gu→v by, for
each x ∈ NG(u)−NG(v)−{v}, removing all edges from G of the form ux and replacing them with
corresponding edges of the form vx. An illustration of this operation appears in Figure 1.

The compression operation—which has also been called a ‘shift transformation’ [4, 7], a ‘Kel-
mans transformation’ [11, 12], or, in its inverse form, a ‘swing surgery’ [23]—was first employed
by Kelmans [19], and later independently by Satyanarayana, Schoppmann, and Suffel [23], both of
whom showed that τ(Gu→v) ≤ τ(G) and RelGu→v(p) ≤ RelG(p), where τ(G) and RelG(p) represent
respectively the number of spanning trees and the all-terminal reliability polynomial RelG(p) of
a graph G. Subsequently Brown, Colbourn, and Devitt [7] showed that ci(Gu→v) ≤ ci(G), where
ci denotes the ith coefficient of the all-terminal reliability polynomial RelG(p), generalizing both
results. (The number of spanning trees is one of the coefficients of the polynomial.)

Compression has since been shown to affect a number of other graph parameters as well. In
what follows we will indicate by “decreases parameter p” the relationship p(Gu→v) ≤ p(G), and
in a similar manner use “increases.” Compression has been shown to decrease the number of k-
factors for every k [15], decrease the number of k-matchings for any k [21], increase the spectral
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Figure 1: An illustration of compression. On the left is a graph G, and on the right Gu→v, the
compression of G from u to v. If edge uv had been present in G, it would also be present in Gu→v.

radius of both G and its complement [12], increase the largest root of the matching polynomial [11],
decrease the smallest real root of the independence polynomial and the coefficients of the chromatic
polynomial [11], increase the number of independent sets of order k for any k [11, 13], and decrease
a number of parameters associated with the Laplacian polynomial of a graph [20]. Most recently in
[13, 14], whose “compression” terminology and Gu→v notation we follow, the result on number of
independent sets was significantly generalized when compression from u to v was shown to increase
the number of homomorphisms into certain target image graphs.

Both the number of spanning trees and the all-terminal reliability are examples of vulnerability
parameters, measures that help gauge how strong a graph or network is. In this context Kelmans
and Satyanarayana, Schoppmann, and Suffel have shown that compression can only weaken a graph.
In this paper we look at the vulnerability parameters vertex connectivity, toughness, scattering
number, edge connectivity, edge toughness, and binding number. For all of these parameters
except scattering number, lower values of the parameter indicate weaker graphs, much like τ(G)
and RelG(p); for scattering number higher values indicate weaker graphs. In this paper we show
that, by these vulnerability measures as well, compression can only weaken a graph. We accomplish
this by determining compression’s effects on the more basic measures on which the parameters are
based, namely ω(G −X) and ω(G − F ), the number of components of G when a vertex set X or
an edge set F is removed, and |NG(S)|, the size of the neighborhood of a vertex set S.

These results on compression in turn imply that extremal graphs for these parameters fall into
the well-known class of threshold graphs. Threshold graphs may be defined in a number of different
ways [22]; later in this paper two in particular will prove useful in addressing the extremal question.
For now we simply note that Satyanarayana, Schoppmann, and Suffel and a number of authors since
have demonstrated that given any graph G, it is possible to produce a threshold graph H from
G via a sequence of compression operations, and if G is connected we may also take H to be a
connected graph as well. As a consequence, in [23] it was shown that threshold graphs minimize
the number of spanning trees and the all-terminal reliability of connected graphs. By the same
reasoning, in this paper we obtain that threshold graphs minimize, or in the case of scattering
number maximize, the vulnerability parameters considered here for connected graphs.
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All graphs in this paper are assumed to be simple (although see [7] for an extension of compres-
sion to multigraphs). The vulnerability parameters considered, as well as the terms and notation
necessary for those definitions, will be defined in the paper as they appear. For any undefined
terms we refer the reader to a standard reference like [5]. In general our notation will be standard
as well, although we note that when no confusion will arise we may omit brackets around vertex
sets, for example writing NG(u, v) instead of NG({u, v}) or X − v instead of X − {v}.

Finally, if NG(u) − NG(v) − v is empty then Gu→v = G, and if NG(v) − NG(u) − u is empty
then Gu→v is isomorphic to G, with the isomorphism obtained by simply switching the labels of u
and v. In these instances we clearly have p(Gu→v) ≤ p(G) as needed, so in the rest of the paper
we assume that NG(u)−NG(v)− v and NG(v)−NG(u)− u are both non-empty.

2 Connectivity, Toughness, and Scattering Number

A number of vulnerability measures, including most of the ones considered in this paper, are
concerned with what happens when vertices and/or edges are deleted from a graph. We begin
then with some simple but useful observations about this situation which for reference we give as
lemmas. To do so we require some notation. While the vertex set of G remains unchanged under
compression, the edge set of Gu→v differs from that of G. It is possible, then, that edges of the
set F mentioned in the lemmas (and in theorems of later sections) may not exist in Gu→v. There
does, of course, exist a natural correspondence between the missing edges of G and the new edges
appearing in Gu→v. By Fu→v we indicate F with any edges of the form ux replaced with the
corresponding edges of the form vx, for any x ∈ NG(u)−NG(v)− v. We begin with the following
straightforward observation which we give without proof.

Lemma 2.1. Let G be a graph and u, v ∈ V (G), with W ⊂ V (G) and F ⊂ E(G). If u, v ∈ W ,
then (G−W )− F = (Gu→v −W )− Fu→v.

Note that, since any subgraph may be considered the result of vertex deletions followed by edge
deletions, the lemma above also implies that a subgraph of G on a vertex set that excludes u, v, is
also a subgraph in Gu→v on the same vertex set.

Lemma 2.2. Let G be a graph and u, v ∈ V (G), with W ⊂ V (G) and F ⊂ E(G). If C is a
component of (G−W )−F such that u, v /∈ V (C), then C is also a component of (Gu→v−W )−Fu→v

on the same vertex set.

Proof. By the previous lemma since u, v /∈ V (C) the subgraph C on the same vertex set appears
unchanged in (Gu→v − W ) − Fu→v and we only need to show that there is no x ∈ V (C) and
y /∈ V (C) such that xy is an edge of (Gu→v −W ) − Fu→v. Assume to the contrary that such an
edge exists. Since xy /∈ (G−W )−F , then we must have either that xy was deleted, i.e. y ∈W or
xy ∈ F , or that xy was moved during compression, i.e. v = y. In the former case clearly xy is also
deleted in (Gu→v −W )− Fu→v as well, a contradiction. And in the latter case if vx is an edge of
(Gu→v −W )− Fu→v this implies ux was an edge of (G−W )− F . Then in (G−W )− F we had
u ∈ V (C), a contradiction as well.

Let ω(G) denote the number of components of a graph G. We now give in effect the main
theorem of the section, which essentially shows that ω(G−X) is in a sense monotonic with respect
to compression.
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Theorem 2.3. Let G be a connected graph and u, v ∈ V (G). Then for any fixed k,

max
X⊆V (G),
|X|=k

ω(G−X) ≤ max
X⊆V (Gu→v),
|X|=k

ω(Gu→v −X). (1)

Proof. It suffices to show that for every X ⊆ V (G) there exists an X ′ ⊆ V (Gu→v) such that

1. |X ′| = |X|, and

2. ω(Gu→v −X ′) ≥ ω(G−X).

We consider the following four cases. In the first three cases we show that compression cannot de-
crease the number of components created by deleting the vertices of X, and so may take X ′ = X.
In the final case a simple alteration of X produces the requisite X ′.

Case 1. v ∈ X. In this case note that Gu→v − v is the subgraph of G − v created by the
additional deletion of edges of the form ux for x ∈ NG(u) − NG(v). Thus Gu→v − X ⊆ G − X,
which implies that ω(Gu→v −X) ≥ ω(G−X).

Case 2. u, v /∈ X and u, v in the same component of G−X. Call this component C. Then by
Lemma 2.2 if C ′ is any component of G−X other than C then C ′ appears unchanged in Gu→v−X.
Thus when comparing the quantities ω(Gu→v−X) and ω(G−X) we may ignore all non-u, v compo-
nents and assume G−X = C. But then clearly 1 = ω(C) = ω(G−X) ≤ ω(Gu→v−X), completing
the case.

Case 3. u, v /∈ X and u, v in different components of G−X. As in the previous case, by Lemma
2.2 we may ignore any non-u, v components, so here it suffices to consider the case where G −X
consists of two components Cu and Cv, which contain u and v respectively, and ω(G−X) = 2. Since
u, v are in separate components of G−X, we must have uv /∈ E(G) and NG(u)∩NG(v) ⊆ X. But in
Gu→v the only vertices possibly adjacent to u are v if uv ∈ E(G) and the vertices of NG(u)∩NG(v).
Hence in Gu→v−X we have u an isolate, and therefore ω(Gu→v−X) ≥ 2 = ω(G−X), completing
the case.

Case 4. u ∈ X and v /∈ X. Let X ′ = X − u ∪ v. Then Gu→v − X ′ is isomorphic to a
subgraph of G−X; to see this note that Gu→v − v is isomorphic to a subgraph of G− u by simply
changing the label u to the label v in Gu→v − v. But Gu→v − X ′ isomorphic to a subgraph of
G − X implies ω(G − X) ≤ ω(Gu→v − X ′). Finally, for this X ′ clearly u ∈ X ′, v /∈ X ′ and so
|X ′| = |X − u ∪ v| = |X|.

The toughness of G, first defined by Chvátal in [8] and denoted here by t(G), is t(Kn) = n− 1
for the complete graph Kn, and otherwise

t(G) = min

{
|X|

ω(G−X)

∣∣∣∣X ⊂ V (G) and ω(G−X) ≥ 2

}
.

The scattering number of a graph G, denoted sc(G), is related to toughness; in fact when introduced
by Jung in [17], he referred to it as the “algebraic dual” of toughness. The scattering number of G
is defined to be sc(Kn) = 2− n for the complete graph Kn, and otherwise

sc(G) = max {ω(G−X)− |X| | X ⊂ V (G) and ω(G−X) ≥ 2} .

4



As an immediate algebraic consequence of the definitions and Theorem 2.3 we have the following.

Theorem 2.4. Let G be a graph and u, v ∈ V (G). Then t(Gu→v) ≤ t(G).

Theorem 2.5. Let G be a connected graph on at least three vertices and u, v ∈ V (G). Then
sc(Gu→v) ≥ sc(G).

Finally, the compression result for connectivity κ(G) follows almost as easily.

Theorem 2.6. Let G be a graph with u, v ∈ V (G). Then κ(Gu→v) ≤ κ(G).

Proof. Let X be a minimum cutset of G, i.e., the minimum order set X ⊂ V (G) such that ω(G−
X) ≥ 2. By Theorem 2.3 there exists an X ′ ⊆ V (Gu→v) with |X ′| = |X| such that 2 ≤ ω(G−X) ≤
ω(Gu→v − X ′), and thus this set X ′ disconnects Gu→v as well. Since |X ′| = |X|, any minimum
cutset of Gu→v must be no larger than |X|, and so κ(Gu→v) ≤ |X| = κ(G) as required.

3 Edge Connectivity and Edge Toughness

An analogue of Theorem 2.3 holds for edge sets. While our goal here is the removal of edge sets
that split the graph G into multiple components, it will be useful to first prove the case of edge
cutsets that split a connected G into exactly 2 components, i.e., minimal edge cuts.

Theorem 3.1. Let G be a connected graph with u, v ∈ V (G). Then for every minimal edge cut
F ⊆ E(G) there exists an edge cut F ′ ⊆ E(Gu→v) such that

1. |F ′| ≤ |F |, and

2. ω(Gu→v − F ′) ≥ ω(G− F ) = 2.

Proof. We denote the distance between u and v in G by dG(u, v). If dG(u, v) ≥ 3, then it is easy
to see that u is an isolate in Gu→v. Then ω(Gu→v) ≥ 2 = ω(G − F ), and hence the theorem is
satisfied with F ′ = ∅. We may therefore assume that dG(u, v) ≤ 2. We now consider the following
cases. In the first case we show that we may take F ′ = Fu→v, and in each of the remaining cases
we show that isolating u in Gu→v more efficiently disconnects the graph.

Case 1. u, v in the same component C of G − F . Call the non-u, v component C ′. Then by
Lemma 2.2, C ′ must also appear identically in Gu→v−Fu→v. Thus ω(Gu→v−Fu→v) ≥ 2 = ω(G−F )
and, since |Fu→v| = |F |, taking F ′ = Fu→v works in this case.

In the remaining cases we have u, v in separate components, call them CA and CB respectively,
and without loss of generality we take v ∈ V (CA) and u ∈ V (CB). Let A (resp. B) denote the
vertices in CA (resp. CB) that are incident to the edge cut F , and note that since dG(u, v) ≤ 2,
this means that either v ∈ A or u ∈ B, or both. The following cases are therefore exhaustive.

Case 2. v ∈ A, u ∈ B. If uv ∈ EG(A,B) then uv ∈ EGu→v(A,B) as well, so when comparing
the sizes of F and F ′ in this case we may assume that uv is not present. Now consider x ∈
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NG(u)∩NG(v). If x ∈ A, then we must have xu ∈ F and xv /∈ F , and if x ∈ B then we must have
xv ∈ F and xu /∈ F . Hence

|F | ≥ |A ∩ (NG(u) ∩NG(v))|+ |B ∩ (NG(u) ∩NG(v))|
= |(A ∪B) ∩ (NG(u) ∩NG(v))|
= |(A ∪B) ∩ (NGu→v(u) ∩NGu→v(v))|

which, since in this case NGu→v(u) ∩NGu→v(v) ⊆ A ∪B,

= |NGu→v(u) ∩NGu→v(v)|
= degGu→v(u).

Therefore if we let F ′ be the set of edges incident to u in Gu→v, or equivalently the edges between
u and the vertices of NG(u) ∩NG(v), by the above we have |F ′| ≤ |F |, and in Gu→v − F ′ we have
u an isolate and thus ω(Gu→v − F ′) ≥ 2 = ω(G− F ).

Case 3. v ∈ A, u /∈ B. In this case then NG(u) ∩NG(v) ⊆ B, and similarly as in the previous
case we have

|F | ≥ |B ∩ (NG(u) ∩NG(v))|
= |B ∩ (NGu→v(u) ∩NGu→v(v))|
= |NGu→v(u) ∩NGu→v(v)|
= degGu→v(u)

and so here again setting F ′ equal to the edges of Gu→v incident to u will satisfy the conditions of
the theorem.

Case 4. v /∈ A, u ∈ B. In this case then NG(u) ∩ NG(v) ⊆ A, and the calculations of the
previous case are identical except with A replacing B. Again setting F ′ equal to the edges of Gu→v

incident to u will satisfy the conditions of the theorem, completing the case and the proof.

Since edge connectivity λ(G) is defined in terms of minimal edge cuts, Theorem 3.1 already
gives the following analogue to Theorem 2.6.

Theorem 3.2. Let G be a graph with u, v ∈ V (G). Then λ(Gu→v) ≥ λ(G).

Proof. Let F be a minimum edge cut of G, i.e. the minimum size set F ⊂ E(G) such that
ω(G − F ) ≥ 2. For such a minimum edge cut we have ω(G − F ) = 2 and by Theorem 3.1 there
exists an F ′ ⊂ Fu→v such that |F ′| ≤ |F | and ω(Gu→v−Fu→v) ≥ ω(G−F ) = 2. Thus this edge set
disconnects Gu→v as well. Since |F ′| ≤ |F |, any minimum edge cutset of Gu→v must be no larger
than |F |, and so λ(Gu→v) ≤ |F | = λ(G) as required.

The next theorem effectively generalizes Theorem 3.1 to edge cuts creating more than two
components.
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Theorem 3.3. Let G be a connected graph and u, v ∈ V (G). Then for any fixed k,

max
F⊆E(G),
|F |≤k

ω(G− F ) ≤ max
F⊆E(Gu→v),
|F |≤k

ω(Gu→v − F ). (2)

Proof. It suffices to show that for any edge cut F ⊆ E(G) there exists an edge cut F ′ ⊆ E(Gu→v)
such that

1. |F ′| ≤ |F |, and

2. ω(Gu→v − F ′) ≥ ω(G− F ).

If u, v are in the same component of G − F then the theorem follows as in Case 1 of Theorem
3.1, so we only consider when u, v are in separate components. Call these components Cu and
Cv respectively. By Lemma 2.2, then, we have that any non-Cu, Cv components in G − F remain
unchanged in Gu→v−Fu→v, and we may ignore these components and assume that G−F = Cu∪Cv.
Now if G is connected, then in this case Theorem 3.1 applies and we are done. Thus we have that
G is a disconnected graph and u and v are in separate components of G.

Call these components Gu and Gv. Now for G of this form, Gu→v has a very specific structure:
Gu→v consists of two components, one the isolate u, and another component consisting of Gu and
Gv but with u and v identified; in other words, the second component consists of two blocks with
v the cutvertex, one block identical to Gv and the other block identical to Gu but with v replacing
u. Gu→v − Fu→v then consists of the isolate u and the components of Gu − F and Gv − F , with
the exception that the components Cu and Cv appear as one component consisting of Cu and Cv

but with u and v identified. So

ω(Gu→v − Fu→v) = 1 + (ω(Cu − F ) + ω(Cv − F )− 1) = ω(Cu − F ) + ω(Cv − F ) = ω(G− F )

and thus taking F ′ = Fu→v will work here, completing the proof.

The edge-toughness parameter was introduced by Gusfeld in [16] as an edge analogue of
Chvátal’s toughness parameter, and is defined as

τe(G) = min

{
|F |

ω(G− F )− 1

∣∣∣∣F ⊂ E(G) and ω(G− F ) ≥ 2

}
.

The edge toughness compression result is an immediate algebraic consequence of the definition and
Theorem 3.3.

Theorem 3.4. Let G be a graph with u, v ∈ V (G). Then τe(Gu→v) ≥ τe(G).

4 Binding Number

In [24], Woodall introduced the notion of the binding number of a graph G. If S ⊆ V (G), let N(S)
denote the set of neighbors of S in G, including any vertices of S that have neighbors in S. The
binding number of G, denoted bind(G), is defined to be

bind(G) = min

{
|N(S)|
|S|

∣∣∣∣ ∅ 6= S ⊆ V (G), N(S) 6= V (G)

}
.
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Somewhat surprisingly, to the best of our knowledge binding number is the only prominent vul-
nerability parameter which takes into account the quantity |NG(S)|. As with the previous sections
rather than simply proving a binding number result we first prove a more general theorem on the
quantity |NG(S)| which then implies the binding number result. We begin with two simple but
useful lemmas.

Lemma 4.1. Let S ⊂ V (G) be such that NGu→v(S) * NG(S). Then v ∈ S or S ∩ (NG(u) −
NG(v)− v) 6= ∅, or both. Moreover, if NGu→v(S) * NG(S) and S ∩ (NG(u)−NG(v)− v) = ∅ then

NGu→v(S) ⊆ NG(S) ∪ (NG(u)−NG(v)− v)

and if NGu→v(S) * NG(S) and v /∈ S then

NGu→v(S) ⊆ NG(S) ∪ v.

Proof. If NGu→v(S) * NG(S), then there exists some vertex in NGu→v(S) that is not in NG(S).
The only vertices that acquire new neighbors after compression from u to v are v itself and the
vertices of NG(u)−NG(v)− v, so we must have either v ∈ S or S ∩ (NG(u)−NG(v)− v) 6= ∅. And
now if S∩ (NG(u)−NG(v)−v) = ∅ then necessarily v ∈ S, and the only new neighbors acquired by
v are the vertices of NG(u)−NG(v)−v, and if v /∈ S then necessarily S∩ (NG(u)−NG(v)−v) 6= ∅,
and the only new neighbor acquired by any vertex of NG(u)−NG(v)− v is the vertex v.

Lemma 4.2. Let S ⊂ V (G) be such that v /∈ S, v /∈ NG(S) but v ∈ NGu→v(S). Then u /∈ NGu→v(S)
and NGu→v(S) ∪ u ⊆ NG(S) ∪ v.

Proof. Since v /∈ NG(S) but v ∈ NGu→v(S) we have NGu→v(S) * NG(S). Then, given that v /∈ S,
by the previous lemma we must have S ∩ (NG(u)−NG(v)− v) 6= ∅ and NGu→v(S) ⊆ NG(S) ∪ v.

Now S∩(NG(u)−NG(v)−v) non-empty implies that S∩NG(u) is non-empty, and so u ∈ NG(S).
On the other hand, we are given that v /∈ NG(S), which implies that S ∩ (NG(u) ∩ NG(v)) = ∅.
Now NGu→v(u) ⊆ NG(u) ∩NG(v) ∪ v. Since v /∈ S, and S ∩ (NG(u) ∩NG(v)) = ∅, this means we
must have u /∈ NGu→v(S).

We have NGu→v(S) ⊆ NG(S)∪ v, and have just established that u ∈ NG(S) and u /∈ NGu→v(S).
Thus we have NGu→v(S) ∪ u ⊆ NG(S) ∪ v, as required.

We are now equipped to determine what happens to NG(S) when u and v are present or not
present in S. The next few lemmas are essentially the cases that when taken together produce
Theorem 4.7.

Lemma 4.3. Let G be a graph with u, v ∈ V (G). Let S ⊆ V (G) be such that v /∈ S and S ∩
(NG(u) − NG(v) − v) 6= ∅. Then either NGu→v(S) ⊆ NG(S), or u /∈ NGu→v(S), v /∈ NG(S) and
NGu→v(S) ∪ u ⊆ NG(S) ∪ v. In either case, we have |NGu→v(S)| ≤ |NG(S)|.

Proof. If NGu→v(S) ⊆ NG(S) then we are done, so we assume that NGu→v(S) * NG(S). Since
v /∈ S, then, by Lemma 4.1 we must have NGu→v(S) ⊆ NG(S) ∪ v. Since we are assuming
NGu→v(S) * NG(S), then we must have v /∈ NG(S) and v ∈ NGu→v(S), and we are given v /∈ S.
By Lemma 4.2 then, we have u /∈ NGu→v(S) and NGu→v(S) ∪ u ⊆ NG(S) ∪ v.

Lemma 4.4. Let G be a graph with u, v ∈ V (G). Let S ⊆ V (G) be such that u, v ∈ S. Then
|NGu→v(S)| ≤ |NG(S)|.
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Proof. If NGu→v(S) ⊆ NG(S) then we are done, so we assume that NGu→v(S) * NG(S). Now let
Y = S − {u, v}, so that

NG(S) = NG(Y ) ∪NG(u, v)

NGu→v(S) = NGu→v(Y ) ∪NGu→v(u, v).

After compression NG(u, v) = NGu→v(u, v), and since we are assuming that NGu→v(S) * NG(S),
we must therefore have NGu→v(Y ) * NG(Y ). Since v /∈ Y by definition, by Lemma 4.1 we have
Y ∩ (NG(u) − NG(v) − v) 6= ∅. But then by Lemma 4.3, with Y in place of S, we must have
u /∈ NGu→v(Y ), v /∈ NG(Y ) and NGu→v(Y ) ∪ u ⊆ NG(Y ) ∪ v. Thus

NGu→v(u, v) ∪NGu→v(Y ) ∪ u ⊆ NG(u, v) ∪NG(Y ) ∪ v

with u /∈ NGu→v(Y ) and v /∈ NG(Y ). Now if uv ∈ E(G) then both u and v are in both of the sets
NG(u, v) and NGu→v(u, v), and the above then implies that NGu→v(S) ⊆ NG(S), a contradiction.
So we must have uv /∈ E(G). In this case then both u and v are absent from both of the sets
NG(u, v) and NGu→v(u, v). This then implies that

NGu→v(S) ∪ u ⊆ NG(S) ∪ v

where u /∈ NGu→v(S) and v /∈ NG(S), which gives |NG(S)| ≤ |NGu→v(S)| as required.

Lemma 4.5. Let G be a graph with u, v ∈ V (G) and uv /∈ E(G). Let S ⊆ V (G) be such that u /∈ S
and v ∈ S. Then |NGu→v(S′)| ≤ |NG(S)|, where S′ = S − v ∪ u.

Proof. Let Y = S′ − u = S − v and note that v /∈ Y . We have

NG(S) = NG(Y ) ∪NG(v)

NGu→v(S′) = NGu→v(Y ) ∪NGu→v(u).

Since uv /∈ E(G), we have NGu→v(u) ⊆ NG(v). Thus if NGu→v(Y ) ⊆ NG(Y ) then NGu→v(S′) ⊆
NG(S) and we are done. So we may assume that NGu→v(Y ) * NG(Y ). By Lemma 4.2 we have
u /∈ NGu→v(Y ), v /∈ NG(Y ) and NGu→v(Y ) ∪ u ⊆ NG(Y ) ∪ v. But then

NGu→v(S′) ∪ u ⊆ NGu→v(Y ) ∪NGu→v(u) ∪ u ⊆ NG(Y ) ∪NG(v) ∪ v = NG(S) ∪ v

with u /∈ NGu→v(S′), v /∈ NG(S). Hence |NGu→v(S′)| ≤ |NG(S)| in this case as well.

Lemma 4.6. Let G be a graph with u, v ∈ V (G) and uv ∈ E(G). Let S ⊆ V (G) be such that u /∈ S
and v ∈ S. Then |NGu→v(S′)| ≤ |NG(S)|, where S′ = S − v ∪ u.

Proof. As in the previous lemma set Y = S′ − u = S − v. We consider the following two cases.

Case 1. Y ∩NG(u) 6= ∅. Then since u ∈ NG(Y ), and v ∈ NGu→v(Y ), we have NG(S) = NG−uv(S)
and NGu→v(S′) = NGu→v−uv(S′). Hence we may consider instead the graphs G−uv and Gu→v−uv
and the result follows from the previous lemma.

Case 2. Y ∩ NG(u) = ∅. Again we use the fact that the previous lemma applied to G − uv
and Gu→v − uv gives |NGu→v−uv(S′)| ≤ |NG−uv(S)|. Now in this case u /∈ NG(Y ) and hence
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NG(S) = NG−uv(S) ∪ u with u /∈ NG−uv(S), which implies |NG(S)| = |NG−uv| + 1. But in
Gu→v, since u ∈ S′ but v /∈ S′ then removing uv can at most remove v from NGu→v(S′). Thus
NGu→v(S′) ⊆ NGu→v−uv(S′) ∪ v, which implies |NGu→v(S′)| ≤ |NGu→v−uv(S′)|+ 1. Thus we have

|NGu→v(S′)| ≤ |NGu→v−uv(S′)|+ 1 ≤ |NG−uv(S)|+ 1 ≤ |NG(S)|

as required.

Taken together, the previous lemmas imply the following theorem, which analogous to Theorems
2.3 and 3.3.

Theorem 4.7. Let G be a graph with u, v ∈ V (G). Then for any fixed k,

min
S′⊆V (Gu→v),
|S′|=k

|NGu→v(S′)| ≤ min
S⊆V (G),
|S|=k

|NG(S)|. (3)

Proof. It suffices to show that for any S ⊂ V (G), there exists an S′ ⊂ V (Gu→v) such that

1. |S′| = |S|, and

2. |NGu→v(S′)| ≤ |NG(S)|.

We exhaust all possible cases. If v /∈ S and S ∩ (NG(u)−NG(v)− v) = ∅ then, as noted in Lemma
4.1, we have NGu→v(S) ⊆ NG(S) and we may take S′ = S. If v /∈ S and S∩(NG(u)−NG(v)−v) 6= ∅,
then by Lemma 4.3 we have |NGu→v(S)| ≤ |NG(S)| and we may take S′ = S. So now we consider
v ∈ S. If u, v ∈ S then Lemma 4.4 gives |NGu→v(S)| ≤ |NG(S)|, and again we may take S′ = S.
And finally, if u /∈ S but v ∈ S, Lemmas 4.5 and 4.6 give |NGu→v(S′)| ≤ |NG(S)| for S′ = S− v∪u,
which satisfies |S′| = |S − v ∪ u| = |S| since v ∈ S but u /∈ S. Thus the theorem statement holds
for either the S′ of Lemmas 4.5 and 4.6 or for S′ = S itself.

Finally, as a straightforward algebraic consequence of the previous theorem we have the result
on binding number.

Theorem 4.8. Let G be a graph with u, v ∈ V (G). Then bind(Gu→v) ≤ bind(G).

5 Compression and Threshold Graphs

Threshold graphs are a well-known and much studied class of graphs and there are many equivalent
ways to define them, see for example [22]. For our purposes, one of the more informative definitions
involves a dominance relation on vertices. We say vertex v dominates vertex u in graph G if
NG(u) ⊆ NG[v], where NG[v] is the closed neighborhood NG[v] = NG(v) ∪ v. A threshold graph is
a graph in which, given any pair of vertices u, v ∈ V (G), either u dominates v or v dominates u.

If Gu→v 6= G then the compression operation takes two vertices u, v ∈ V (G) which do not dom-
inate each other and produces a new graph Gu→v in which v does dominate u. After compression,
then, a graph is “more threshold” and continued application of compression can only increase this.
Eventually, continuing the compression operation (with different pairs of vertices) will result in a
threshold graph, a fact noted originally by Satyanarayana, Schoppmann, and Suffel [23], as well as
by a number of authors since then [4, 11, 13, 14].
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Theorem 5.1. Let G0 be a connected graph. Then there exists a series of connected graphs
G0, G1, G2, . . . , Gk such that, for all i = 1, . . . , k, the graph Gi is connected with Gi = (Gi−1)u→v

for some u, v ∈ V (Gi−1), and the graph Gk is a connected threshold graph.

Since compression decreases spanning trees and all-terminal reliability, it can be concluded [7, 23]
that for any connected graph G there is a connected threshold graph H such that τ(H) ≤ τ(G)
and Relp(H) ≤ Relp(G). In other words, threshold graphs minimize those parameters. In the same
way, Theorem 5.1 and the results of this paper imply the following.

Theorem 5.2. Let G be a connected graph. Then there exists a connected threshold graph H with
the same number of vertices and edges such that p(H) ≤ p(G), where p is any of the vulnerability
parameters connectivity, toughness, edge connectivity, edge toughness, and binding number. In
other words, threshold graphs minimize those parameters.

Theorem 5.3. Let G be a connected graph. Then there exists a connected threshold graph H with
the same number of vertices and edges such that sc(H) ≥ sc(G), where sc denotes the scattering
number. In other words, threshold graphs maximize scattering number.

An interesting question is which particular threshold graphs minimize (or maximize) those
parameters. Another useful way of defining threshold graphs are as particular kinds of split graphs,
graphs whose vertex sets can be partitioned into two sets, one of which induces a clique and the
other of which induces an independent set. A threshold graph is a split graph in which the vertices
of the independent set have nested neighborhoods [22]. In 1990 Boesch et al. conjectured [2] the
form of the particular threshold graph Ln,m that would, for given n = |V (G)| and m = |E(G)|,
achieve the minimum values of τ(G) and Relp(G). Informally, these are obtained by making the
clique as large as possible and then, when connecting the remaining vertices of the independent set
to the clique, making as many degree one vertices as possible. Formally, let k be the least integer
such that m ≥

(
n−k
2

)
+k. Then Ln,m is the threshold graph consisting of an (n−k)-clique, with k−1

pendant vertices and one vertex of degree m −
(
n−k
2

)
− k − 1 attached to it. Confirming Boesch’s

conjecture that Ln,m minimizes τ(G) and Relp(G) for all p appears to be difficult. It took about
20 years for the conjecture to be proven correct for τ(G) in [4], with the proof requiring a long
and technical optimization argument. The conjecture that the Ln,m graphs minimize all-terminal
reliability remains open.

For some of the parameters considered here the situation is not so difficult. For instance, it is
clear that minimizing κ and λ for threshold graphs can be achieved by creating a pendant vertex
or, when that is not possible, by minimizing the minimium degree δ, and it is also clear that the
Ln,m graphs do this. Hence the Ln,m graphs minimize κ and λ. For the other parameters, we do
not know the minimizing (or in the case of scattering number, maximizing) graphs.

Question 1. Which graphs minimize toughness, edge toughness, and binding number, and maxi-
mize scattering number, over all connected graphs with n vertices and m edges?

The Ln,m graphs are typically not unique minimizers, even for spanning trees; for instance the
k− 1 pendant edges can be replaced with a path on those vertices instead and the resulting graph
will have the same number of vertices, edges, and spanning trees as the equivalent Ln,m graph. In
[3], however, Bogdanovich showed that compression preserves the property of being 2-connected
chordal, and furthermore proved in this case that repeated application of compression results in
a unique 2-connected chordal threshold graph that minimizes spanning trees over all 2-connected
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chordal graphs, which we describe here. Let k be the least integer such that m ≥
(
n−k
2

)
+ 2k. Then

Qn,m is the unique threshold graph consisting of an (n − k)-clique, and k − 1 vertices of degree 2

and one vertex of degree m −
(
n−k
2

)
− 2k − 1 attached to it. Therefore, as with Theorem 5.2, we

have the following.

Theorem 5.4. Let G be a 2-connected chordal graph on n vertices and m edges. Then p(Qn,m) ≤
p(G), where p is any of toughness, edge toughness, and binding number, and sc(Qn,m) ≥ sc(G)
for scattering number. In other words, Qn,m minimizes toughness, edge toughness, and binding
number, and maximizes scattering number, over all 2-connected chordal graphs.

We conclude with a final comment on graph vulnerability parameters and compression. The
fact that threshold graphs have been shown to be extremal for all vulnerability parameters to date
suggests the “meta-conjecture” that perhaps compression always weakens a graph, or that the Ln,m

threshold graphs might be extremal graphs for any vulnerability parameter. These conjectures are
in fact not true. In a companion paper [18] to his one we consider the vulnerability parameters
integrity, tenacity, and k-order connectivity under compression and show that there are graphs
containing a pair of vertices u, v where compression from u to v can increase those parameters. In
other words, and in contrast to the parameters examined in this paper, when “strength” is measured
by those parameters compression may strengthen certain graphs. It is also shown that the Ln,m

graphs are not minimizers for those parameters for certain n,m values. However in that paper it
is also shown that the larger class of quasi-threshold graphs minimize the integrity, tenacity, and
k-ordered connectivity parameters. Since threshold graphs are a subclass of quasi-threshold graphs,
it is still an open question—and some small examples of this phenomenon are presented—whether
threshold graphs other than the Ln,m graphs are the minimizers there.
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