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Abstract

A graph transformation called the compression of a graph G is known to decrease the number of
spanning trees, the all-terminal reliability, and the magnitude of the coefficients of the chromatic
polynomial of a graph G. All of these graph parameters can be derived from the Tutte poly-
nomial of G, and in this paper we determine more generally compression’s effect on the Tutte
polynomial, recovering the previous results and obtaining similar results for a wide variety of
other graph parameters derived from the Tutte polynomial. Since any simple connected graph
can be transformed into a connected threshold graph via a series of compressions, this gives that
threshold graphs are extremal simple graphs for all of the parameters considered.

1 Introduction

The Tutte polynomial TG(x, y) of a graph G with n vertices may be defined as

TG(x, y) =
∑

A⊆E(G)

(x− 1)κ(A)−κ(E(G))(y − 1)|A|−n+κ(A)

where κ(A) is the number of connected components of the spanning subgraph defined by the edges
of A. The polynomial TG(x, y) has been shown to encode a vast amount of structural information
about G, in essence encompassing every graph parameter of G that obeys a deletion-contraction
identity, a property sometimes called the universality property of the Tutte polynomial [20]. We
mention three parameters in particular:

• the number of spanning trees of a connected graph G, denoted τ(G), is TG(1, 1),

• the all-terminal reliability of G, denoted RelG(p), gives the probability that G is connected
if the edges of G fail independently with probability p, and is

RelG(p) = p|V (G)|−1(1− p)|E(G)|−|V (G)|+1TG(1, 1/(1− p)),

• the chromatic polynomial of G, denoted χG(λ), gives the number of ways to properly color
the vertices of G with λ colors, and is

χG(λ) = (−1)|V |−κ(E(G))λκ(E(G))TG(1− λ, 0).
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For these facts and more on the Tutte polynomial and its applications we refer to the surveys
[10, 20, 35, 45].

Threshold graphs are a well-known and much-studied class of graphs, see for instance [32]. In
Section 6 of this paper we discuss them in more detail; for now we observe that threshold graphs
have been shown to minimize, over all simple connected graphs, the three parameters listed above.
In his 1985 thesis [5] Bogdanowicz showed that for any connected graph G there was a connected
threshold graph H with the same number of vertices and edges such that τ(H) ≤ τ(G), and
subsequently Satyanarayana, Schoppmann, and Suffel [38] rediscovered the spanning tree result
and showed a similar statement held for the all-terminal reliability RelG(p). Letting ci(G) denote
the ith coefficient of χG(λ), in [14] Csikvári and in [37] Rodriguez and Satyanarayana showed that
for every G there is a threshold graph H with the same number of vertices and edges such that
|ci(H)| ≤ |ci(G)| for every i ≥ 1.

Given these facts a few questions arise. Might threshold graphs minimize a larger collection
of graph parameters related to the Tutte polynomial? Do threshold graphs maximize any such
parameters? Are threshold graphs even in some sense extremal for the Tutte polynomial itself?

In this paper we show that in a very natural sense threshold graphs are minimal for the Tutte
polynomial, and that in a unified way this minimality translates into minimality (or in rare cases,
maximality) for a wide variety of graph parameters that can be derived from it. It is probably worth
mentioning here some of these parameters, which for convenience we categorize as either evaluations
of the Tutte polynomial or polynomial specializations of it. For evaluations, we are able to show
that threshold graphs are extremal for every evaluation of TG(x, y) in the first quadrant of the
xy-plane, and can characterize for which points there threshold graphs are minimal or maximal.
The number of spanning trees and the all-terminal reliability are two such evaluations, but others
here include the number of spanning forests and the number of spanning connected subgraphs;
the number of acyclic orientations, totally cyclic orientations, acyclic orientations with a single
source, or score vectors of orientations; enumerations of a wide variety of different types partial
orientations; and the evaluations of the q-state Potts model from theoretical physics for q ≥ 1.
(Threshold graphs minimize all of these parameters except the q-state Potts model evaluations,
which are maximized.) Looking at polynomial specializations of TG(x, y), in addition to recovering
the aforementioned chromatic polynomial result, we can for example derive similar coefficient results
for the flow polynomial, the all-terminal reliability polynomial (in both its S-form and H-form) and
various generating functions, including generating functions for spanning forests of i components,
spanning subgraphs of i edges, the number of critical configurations of level i of the Abelian sandpile
model, and variety of generating functions relating to fourientations of a graph.

The main tool used to accomplish this is a graph transformation called the compression of G
from vertex u to vertex v. Let NG(u) and NG(v) respectively denote the neighborhoods in G of u
and v. The compression of G from u to v produces a new graph Gu→v by, for each x ∈ NG(u) −
NG(v) − {v}, removing all edges from G of the form ux and replacing them with corresponding
edges of the form vx. An illustration of compression appears in Figure 1. Graph compression
appears to have been first employed by Kelmans in [28], who to a large extent anticipated the
spanning tree and all-terminal reliability results of [5, 38] by showing that compression decreased
those parameters. Graph compression also has been shown to uniformly decrease or increase a
number of graph parameters not associated with the Tutte polynomial [15, 16, 17, 24, 25, 26, 29].
We note that the operation does not have a standard name; in the literature we have also seen it
called a path property transformation [5], a shift transformation [6, 7, 9], a swing surgery [38], a
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Figure 1: An illustration of compression. On the left is a graph G, and on the right Gu→v, the
compression of G from u to v. If edge uv had been present in G, it would also be present in Gu→v.

Kelmans transformation [14, 15], or not given a name at all (as in Kelmans’ original paper). Our
choice of the “compression” terminology here follows [16, 17] and is motivated by the following
fact—first observed by Bogdanowicz [5] and by Satyanarayana, Schoppmann, and Suffel [38], but
also by a number of authors since [6, 14, 16, 17]—which gives it its relevance for extremality.
(Connected threshold graphs necessarily have diameter less than or equal to 2.)

Theorem 1.1 ([5, 38]). Any connected non-threshold graph G can be transformed into a threshold
graph H by repeated applications of graph compression. We may also take the threshold graph H
to be connected by taking each compression to be on vertices at distance 2 or less.

The main theorem of this paper determines the effects of the compression of G from u to v
upon TG(x, y), showing that in an important respect compression “decreases” the Tutte polynomial.
Letting distG(u, v) denote the distance in G from u to v, we prove the following.

Theorem 1.2. Let G be a connected graph, and let u, v ∈ V (G). If distG(u, v) ≤ 2 then

TG(x, y)− TGu→v(x, y) = (x+ y − xy)Pu,v(x, y)

and if distG(u, v) ≥ 3 then

TG(x, y)− (x− 1)TGu→v(x, y) = (x+ y − xy)Pu,v(x, y)

where Pu,v(x, y) is a polynomial with non-negative coefficients.

In this paper we will primarily be concerned with connected graphs and will mostly focus on the
distG(u, v) ≤ 2 case above (compression when distG(u, v) ≥ 3 renders u an isolate) although the
distG(u, v) ≥ 3 case will be be useful too, for example helping to provide a simple algebraic proof
of Csikvári’s results on compression’s effect on the chromatic polynomial.

It is not difficult to see that the subtraction of the Tutte polynomials of two connected graphs
with the same number of vertices and edges must have a factor of x+y−xy, a fact we demonstrate
later in Section 5. The key feature of Theorem 1.2 then is that, regardless of the choice of u, v ∈
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V (G), the polynomials Pu,v(x, y) have non-negative coefficients. In this sense TGu→v(x, y) is a
“smaller” polynomial than TG(x, y), and it is this decrease that carries over to the array of graph
parameters determined by the Tutte polynomial previously mentioned. That threshold graphs are
typically minimizing for these parameters follows from these decreases and Theorem 1.1.

The structure of the paper is as follows. We approach the proof of Theorem 1.2 via the mul-
tivariate q-state Potts model ZG(q,w), also called the multivariate Tutte polynomial [41]. This
polynomial generalizes the q-state Potts model ZG(q, w) of theoretical physics, which in turn is
equivalent to the traditional Tutte polynomial via a change of variables. Our proof of Theorem 1.2
is fairly computational and the multivariate q-state Potts model has a number of computational
advantages over the traditional Tutte polynomial, including a simpler deletion-contraction rule and
series and parallel reductions. Our use of the Potts model, for example, permits a unified approach
to the distG(u, v) ≤ 2 and distG(u, v) ≥ 3 cases and also helps explain the appearance of the x− 1
factor in the distG(u, v) ≥ 3 case. In order to keep the paper as self-contained as possible, in Section
2 we present the necessary preliminaries on the multivariate q-state Potts model. In Section 3 we
prove an analogue to Theorem 1.2 for the q-state Potts model, which serves both as the base of our
proof of Theorem 1.2 and as a simpler model of it. In Section 4 we adapt the results of Section 3
to the traditional Tutte polynomial setting, proving Theorem 1.2.

In Section 5 we introduce the (n,m) Tutte polynomial poset, a poset on simple connected graphs
of n vertices and m edges where H 4 G if and only if

TG(x, y)− TH(x, y) = (x+ y − xy)P (x, y)

for some polynomial P (x, y) with non-negative coefficients. We show how H 4 G in this poset
implies a decrease in all of the graph parameters mentioned previously (except the evaluations
of the q-state Potts model itself, for which H 4 G implies an increase), allowing us to address
all of these in a unified way. The first case of Theorem 1.2 demonstrates that Gu→v 4 G when
distG(u, v) ≤ 2 and thus we have that these compressions decrease (or increase) all of the relevant
parameters. Finally in Section 6 we conclude with a discussion of threshold graphs in the context
of the (n,m) Tutte polynomial posets, confirming that they are minimal there: for any simple
connected graph G there is a connected threshold graph H with the same number of vertices and
edges such that H 4 G. We end by conjecturing that the (n,m) Tutte polynomial posets in
fact have a minimum element, in other words that there exists a threshold graph Ln,m such that
Ln,m 4 G for every G with n vertices and m edges, and we describe these threshold graphs Ln,m
which we believe are minimum graphs for the Tutte polynomial.

2 The multivariate q-state Potts model

The multivariate q-state Potts model polynomial is defined to be

ZG(q,w) =
∑
A⊆E

qκ(A)
∏
e∈A

we

where q and the elements of w = {we}e∈E are commuting indeterminates. When the we are all
equal, say we = w for all e ∈ E(G), the resulting polynomial is the q-state Potts model from
theoretical physics, denoted ZG(q, w). We now present the facts about ZG(q,w) and ZG(q, w)
necessary for our main results. All of what follows here up until Theorem 2.1 can be found elsewhere,
for example in the excellent survey by Sokal [41].
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Unlike the traditional Tutte polynomial TG(x, y) the deletion-contaction rule for ZG(q,w) is
the same for any edge e, regardless of whether e is a bridge, loop, or otherwise:

ZG(q,w) = ZG−e(q,w) + weZG/e(q,w) (1)

where G− e indicates G with the edge e deleted, and G/e indicates G with the edge e contracted.
Any multiple edges and/or loops created by contracting an edge are kept in G/e. (On the right-
hand side since edge e is no longer present in G we may if desired omit we from w.) The deletion-
contraction formula (1) can be used as a recursive definition of ZG(q,w) by applying it successively
to all edges present, with the empty graphKn having ZKn(q,w) = qn. As with the Tutte polynomial
the resulting polynomial ZG(q,w) is independent of the order in which edges are taken.

In the q-state Potts model setting if e is a loop then we take G/e = G − e. As a consequence
when e is a loop we have

ZG(q,w) = (1 + we)ZG−e(q,w). (2)

Like the traditional Tutte polynomial TG(x, y), the multivariate Tutte polynomial factors over
components; if G is the disjoint union of graphs G1 and G2 then

ZG(q,w) = ZG1(q,w)ZG2(q,w). (3)

In particular, adding an isolated vertex to a graph G has the effect of multiplying ZG(q,w) by q,
i.e. ZG∪K1(q,w) = qZG(q,w). In a similar manner, if G consists of graphs G1 and G2 joined at a
single cutvertex, then

ZG(q,w) =
1

q
ZG1(q,w)ZG2(q,w). (4)

As a consequence when e is a bridge we have ZG−e(q,w) = qZG/e(q,w), and then by deletion-
contraction on e we have

ZG(q,w) = (q + we)ZG/e(q,w). (5)

This implies that all trees with constant weights on n vertices have the same q-state Potts model
polynomial q(q + w)n−1.

Unlike the traditional Tutte polynomial, the multivariate q-state Potts model permits reductions
of edges in series or in parallel. We require only the parallel reduction. A set of edges e1, . . . , ek
are said to be in parallel if they share the same endvertices. If edges {ei}ki=1 are in parallel then
the parallel reduction replaces all of the edges by a single edge e with weight

we =

k∏
i=1

(wei + 1)− 1. (6)

The multivariate q-state Potts model is invariant under parallel reductions, i.e., ZG(q,w) = ZG′(q,w′)
where G′ and w′ are the graph G and the weight vector w after the parallel reduction. We may
allow edge weights of zero to indicate the absence of edges between two vertices, which is reflected
in the form of (6) as well.

The proofs of our main results essentially proceed by reducing the problem to a particular
bipartite case. The bipartite graph of interest here we will call a multigraph K2,p, that is, the
bipartite graph K2,p where various edges may appear with some multiplicity (including possibly
multiplicity of zero). The generalized theta graph θs1,...,sp is the graph consisting of endvertices u, v
connected by p internally disjoint paths of lengths s1, . . . , sp. In [40] Sokal determined ZG(q,w) for
G a generalized theta graph.
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Theorem 2.1 (Proposition 2.3, [40]). For the generalized theta graph θs1,...,sp with edge weights
{wij}1≤i≤p,1≤j≤si we have

Zθs1,...,sp (q, {wij})

= q−(p−1)


p∏
i=1

 si∏
j=1

(q + wij) + (q − 1)

si∏
j=1

wij

+ (q − 1)

p∏
i=1

 si∏
j=1

(q + wij)−
si∏
j=1

wij

 . (7)

Using the generalized theta graph result above with the parallel reduction we obtain ZG(q, w) for
G a multigraph K2,p.

Lemma 2.2. Let G be a multigraph K2,p, with {u, v} one partite set and {xi}pi=1 the other, and
for each i = 1, . . . , p let mi (respectively ni) denote the number of parallel edges between xi and u
(respectively v). Then

ZG(q, w) = q

[
p∏
i=1

(
q + (w + 1)mi+ni − 1

)
+ (q − 1)

p∏
i=1

(q + (w + 1)mi + (w + 1)ni − 2)

]
.

Proof. The simple graph K2,p is a generalized theta graph with si = 2 for all i = 1, . . . , p. Now (7)
gives

ZK2,p(q,w) = q−(p−1)

[
p∏
i=1

((q + wi1)(q + wi2) + (q − 1)wi1wi2)

+(q − 1)

p∏
i=1

((q + wi1)(q + wi2)− wi1wi2)

]

= q−(p−1)

[
p∏
i=1

(q2 + qwi1 + qwi2 + qwi1wi2) + (q − 1)

p∏
i=1

(q2 + qwi1 + qwi2)

]

where w =
⋃p
i=1{wi1, wi2}. Factoring qp from the brackets and rewriting the first product we

obtain

ZK2,p(q,w) = q

[
p∏
i=1

(q + (wi1 + 1)(wi2 + 1)− 1) + (q − 1)

p∏
i=1

(q + wi1 + wi2)

]
.

When K2,p is a multigraph, the edge weights are given by using the parallel reduction (6) on the
parallel edges present. For identical edge weights with weight w we obtain

wi1 = (w + 1)mi − 1

wi2 = (w + 1)ni − 1

for each i = 1, . . . , p. If a single edge or no edges are present between two vertices, the parallel
reduction formula recovers w or 0 appropriately, hence there is no problem applying the parallel
reduction for all i = 1, . . . , p. Substituting these for the weights of w and simplifying gives the
result.
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3 Compression and the q-state Potts model

Before proving a q-state Potts model version of Theorem 1.2 we make some comments about
notation, applicable here and in the Tutte polynomial proof in the next section. Since G− u− v =
Gu→v−u−v there is an obvious and natural correspondence between the edges of those subgraphs
and, abusing notation somewhat, we will use the same labels to identify the vertices and edges
in G − u − v and the corresponding vertices and edges in Gu→v − u − v. We will also use the
following notation, first appearing in [16, 17]. The choice of u, v ∈ V (G) defines a natural partition
of V (G) − {u, v} into four parts: vertices adjacent only to u, vertices adjacent only to v, vertices
adjacent to both, and vertices adjacent to neither. For ease of reference we abbreviate these as
Auv, Auv, Auv, and Auv respectively. Finally, for brevity we may refer to a polynomial with all
non-negative coefficients as a non-negative polynomial, and a non-negative polynomial with at least
one positive coefficient, i.e. one that is not the zero polynomial, as a positive polynomial.

Theorem 3.1. Let G be a connected graph, and let u, v ∈ V (G). Then

ZG(q, w)− ZGu→v(q, w) = q(1− q)Pu,v(q, w)

where Pu,v(q, w) is a non-negative polynomial.

Proof. To minimize the appearance of multiple subscripts during calculations throughout the proof
we will let Gu→v = H.

If edge uv ∈ E(G) then, noting that G/uv = H/uv, by deletion-contraction on uv we have

ZG(q, w)− ZH(q, w) = ZG−uv(q, w)− ZH−uv(q, w).

Hence we may assume that there is no edge between u and v. Additionally, if E(G − u − v) is
empty then G and H have the same block decomposition and ZG(q, v) = ZH(q, v). In this case the
theorem is true with Pu,v(q, v) = 0, so we also assume that E(G− u− v) is non-empty.

Let S = E(G − u − v) = E(Gu→v − u − v). We now decompose ZG(q, w) and ZH(q, w) by,
in both graphs, “deleting/contracting every edge of S.” Formally, let {e1, . . . , e`} be a fixed but
arbitrary ordering of the edges of S, and let R = (r1, . . . , r`) be a binary vector in {0, 1}`. Form
the multigraphs GR and HR by sequentially deleting when ri = 0, or contracting when ri = 1,
each edge ei in turn. Repeated application of the deletion-contraction formula (1) to ZG(q, w) and
ZH(q, w) then produces

ZG(q, w)− ZH(q, w) =
∑

R∈{0,1}`
wr(ZGR

(q, w)− ZHR
(q, w))

where r =
∑`

i=1 ri is the number of contractions that took place under R. Since all edges of S have
been deleted or contracted, and the edge uv is not present, then for each R the graphs GR and HR

are multigraph K2,p’s, where p = |V (G)| − r − 2.
As in Lemma 2.2, then, for any fixed R ∈ {0, 1}` we let {xi}pi=1 be the non-u, v partite set of GR

and HR, and for each i = 1, . . . , p we let mi (respectively ni) denote the number of edges between
xi and u (respectively v) in GR, and define m′i and n′i similarly for HR. (We note that, as with the
variable r, each {xi}pi=1 set and the p,mi, ni,m

′
i, n
′
i variables are a function of R, although we omit

any identifying R notation for clarity in the calculations to follow.) Since compression preserves
the degrees of non-u, v vertices we have

mi + ni = degGR
(xi) = degHR

(xi) = m′i + n′i.
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In particular we have
q + (w + 1)mi+ni − 1 = q + (w + 1)m

′
i+n

′
i − 1

for each i = 1, . . . , p, and therefore by Lemma 2.2,

ZGR
(q, w)− ZHR

(q, w)

= q(1− q)

[
p∏
i=1

(
q + (w + 1)m

′
i + (w + 1)n

′
i − 2

)
−

p∏
i=1

(q + (w + 1)mi + (w + 1)ni − 2)

]
.

(8)

To complete the proof it is now sufficient to show that the expression in brackets above is a
polynomial with non-negative coefficients. To that end, let

Smi,ni(q, w) = q + (w + 1)mi + (w + 1)ni − 2

and note that, since mi, ni,m
′
i, n
′
i are all non-negative, Sm′

i,n
′
i
(q, w) and Smi,,ni,(q, w) are themselves

polynomials with non-negative coefficients. By adding and subtracting identical terms and then
regrouping, we rewrite the bracketed expression in (8) as

p∏
i=1

Sm′
i,n

′
i
(q, w)−

p∏
i=1

Smi,ni(q, w) =

p∑
i=1

(Sm′
i,n

′
i
(q, w)− Smi,ni(q, w))

∏
j<i

Sm′
j ,n

′
j
(q, w)

∏
j>i

Smj ,nj (q, w)

 .
Since each polynomial Sm′

i,n
′
i
(q, w) and Smi,ni(q, w) is non-negative, to complete the proof it only

remains to show that the expression Sm′
i,n

′
i
(q, w) − Smi,ni(q, w) is a non-negative polynomial for

any single index i.
For a single index i we have

Sm′
i,n

′
i
(q, w)− Smi,ni(q, w) = (w + 1)m

′
i + (w + 1)n

′
i − (w + 1)mi − (w + 1)ni

= (w + 1)m
′
i

(
(w + 1)ni−m′

i − 1
)(

(w + 1)mi−m′
i − 1

)
.

(9)

We now show that each exponent above is non-negative. Each edge counted by mi, ni,m
′
i, n
′
i

corresponds, in the original graph G, to an edge from the vertex set {u, v} to one of the three sets
Auv, Auv, or Auv. We now refine those counts by tracking which edges come from each of those
three sets. Let z  xi indicate that the vertex z in V (G) (and hence V (H)) has been identified
with the vertex xi in GR (and hence HR) via the sequence of deletions and contractions in R. For
each xi we define the quantities ai, bi, ci to be

ai = |{z ∈ V (G) : z  xi and z ∈ Auv}|
bi = |{z ∈ V (G) : z  xi and z ∈ Auv}|
ci = |{z ∈ V (G) : z  xi and z ∈ Auv}|.

By the compression operation we have for each xi,

mi = ai + ci m′i = ci

ni = bi + ci n′i = ai + bi + ci
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Substituting these ai, bi, ci expressions in (9) gives

Sm′
i,n

′
i
(q, w)− Smi,ni(q, w) = (w + 1)ci

(
(w + 1)ai − 1

)(
(w + 1)bi − 1

)
.

Since ai, bi, ci are all non-negative, the expression above is indeed a polynomial with non-negative
coefficients, and the proof is complete.

Theorem 3.1 is used in the proof of our main theorem, and before moving on to that proof it
will be useful to note more explicitly the form of Pu,v(q, w). From the previous proof we have that

ZG(q, w)− ZH(q, w) =
∑

R∈{0,1}`
wr(ZGR

(q, w)− ZHR
(q, w)) = q(1− q)

∑
R∈{0,1}`

wrPR(q, w) (10)

where

PR(q, w) =

p∑
i=1

(w + 1)ci
(

(w + 1)ai − 1
)(

(w + 1)bi − 1
)∏
j<i

Sm′
j ,n

′
j
(q, w)

∏
j>i

Smj ,nj (q, w) (11)

with ai, bi, ci, Smj ,nj (q, w), Sm′
j ,n

′
j
(q, w) as previously defined.

4 Compression and the Tutte polynomial

The q-state Potts model ZG(q, w) is equivalent to the Tutte polynomial TG(x, y) by the change of
variables

TG(x, y) = (x− 1)−κ(E(G))(y − 1)−|V (G)|ZG((x− 1)(y − 1), y − 1) (12)

where as before the notation κ(G) indicates the number of components of graph G [41]. (As we
will see this (x − 1)−κ(G)(y − 1)−|V (G)| prefactor is the source of the x − 1 factor appearing in
the distG(u, v) ≥ 3 case in Theorem 1.2.) However a simple application of (12) to Theorem 3.1
does not immediately produce the desired result, as it is not clear that the polynomials PR(q, w)
remain positive polynomials under the substitutions q = (y − 1)(x − 1) and w = y − 1. Indeed
there are two important circumstances where they do not: when a loop has been contracted in
the formation of GR and HR then the respective term wr(ZGR

(q, w) − ZHR
(q, w)) has y − 1 as a

factor, and when a bridge has been deleted in the formation of GR or HR then an x − 1 factor
may appear. If multiple loop contractions and/or bridge deletions have occurred in the formation
of GR or HR, then additional y− 1 or x− 1 factors appear, and this is true even after the prefactor
(x− 1)−κ(E(G))(y − 1)−|V (G)| is accounted for.

These terms with x−1 or y−1 as a factor are not difficult to account for, however. When terms
appear that correspond to loop contractions or bridge deletions, it is also the case that additional
terms appear, identical to these ‘problematic’ terms except with one less y − 1 or x − 1 factor
appropriately. Combining terms then reduces the number of y − 1 or x − 1 factors appearing by
one. As we will show, we may repeat this process to eventually create a new sum for which each
term is a non-negative polynomial. In fact, since this eventual sum with combined terms now is
constructed using only those vectors in R where no loops are contracted and no bridges deleted,
this new sum is precisely the sum that results by “deleting-contracting every edge of S” using the
traditional Tutte polynomial deletion-contraction rule, which does not permit those operations.
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To help identify and track these terms we introduce the following terminology and notation,
which builds on the notation used in the proof of Theorem 3.1. For fixed R and for each i = 1, . . . , `,
let GiR, H

i
R denote respectively the graphs G and H after the first i − 1 operations of R (deletion

of ej if rj = 0 and contraction of ej if rj = 1) have been performed. We say edge ei is a loop (resp.
bridge) in the formation of GR if the edge ei is a loop (resp. bridge) in GiR. Note that edges of
S that are loops or bridges of G will also be loops or bridges in the formation of GR. We make a
similar definition for the formation of HR. We say that R,R′ ∈ {0, 1}` i-correspond if R and R′

are identical binary vectors except at coordinate ri.
The relevant term combinations are contained in (13) and (14) below, which for reference

we collect in the following lemma. Note that (13) effectively combines a loop deletion term and
loop contraction term into a single loop deletion term, and (14) combines a bridge deletion and
contraction term into a bridge contraction.

Lemma 4.1. Say R0 and R1 i-correspond, with ri = 0 in R0 and ri = 1 in R1, with r the number
of contractions taking place under R0. If ei is a loop in both GiR1

and H i
R1

then

wr(ZGR0
(q, w)−ZHR0

(q, w))+wr+1(ZGR1
(q, w)−ZHR1

(q, w)) = (1+w)wr(ZGR0
(q, w)−ZHR0

(q, w)).
(13)

If ei is a bridge in GiR0
and H i

R0
, then

wr(ZGR0
(q, w)−ZHR0

(q, w))+wr+1(ZGR1
(q, w)−ZHR1

(q, w)) = (q+w)wr(ZGR1
(q, w)−ZHR1

(q, w)).
(14)

Proof. Since R0, R1 i-correspond then ei is a loop (resp. bridge) in GiR1
if and only if ei is a

loop (resp. bridge) in GiR0
, and a similar statement holds with H in place of G. Now for the

loop equation, since R0, R1 i-correspond, and deleting and contracting a loop result in the same
graph, we have GR1 = HR1 and GR0 = HR0 and the result follows. For the bridge equation,
deleting a bridge results in the same block structure as contracting the bridge, but does increase
the number of components by one. By (3) and (4) then, here we have qZGR1

(q, w) = ZGR0
(q, w)

and qZHR1
(q, w) = ZHR0

(q, w) and the result follows.

The previous lemma does not address the question of whether it is possible that ei could be a
bridge or a loop in one of GiR or H i

R but not in the other. It is in fact possible for ei to be a bridge
in GiR but not in H i

R; for a simple example consider G = P4, the path on four vertices, and let u, v
be opposite ends of the path. However, this type of situation is the only possibility.

Lemma 4.2. The edge ei is a loop in GiR if and only if it is a loop in H i
R. If ei is a bridge in H i

R,
then ei is a bridge in GiR as well.

Proof. A loop, say ei, is contracted in the formation of GR if and only if ei is a loop contracted in
the formation of HR as well: if ei is a contracted loop in the formation of GR then every edge of
some cycle of G−u− v was contracted, and since G−u− v = H −u− v this implies that the same
cycle was contracted in the formation of HR, and vice-versa.

If ei is a bridge in H i
R we may assume that H i

R − ei consists of two components, say C and
C ′, and that v ∈ V (C). But then necessarily V (C ′) ⊆ Aiuv, where Aiuv is Auv after the first i − 1
operations of R have been performed. This implies that no edge except ei exists between V (C)
and V (C ′) in GiR as well, and thus ei is a bridge there too.
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And moreover, we may effectively ignore the case when ei is a bridge in GiR but not in H i
R, as

our final lemma shows.

Lemma 4.3. Say R is such that ri = 0, and ei is a bridge in GiR but is not a bridge in H i
R. Then

ZGR
(q, w)− ZHR

(q, w) = 0.

Proof. Necessarily ei has in GiR one endvertex in Auv and the other endvertex in Auv, and we may
assume that G`R − ei consists of two components C and C ′ with v ∈ V (C) and u ∈ V (C ′). This
implies that H i

R − ei consists of two components with very specific structures: one component is
the isolate u, and in the other component v is a cutvertex between blocks isomorphic to C and C ′.
Therefore, using (3) and (4), we have

ZHi
R−ei

(q, w) = q

(
1

q
ZC(q, w)ZC′(q, w)

)
= ZC(q, w)ZC′(q, w) = ZGi

R−ei
(q, w)

and the result follows.

We are now ready to prove our main theorem.

Theorem 1.2 Let G be a connected graph, and let u, v ∈ V (G). If distG(u, v) ≤ 2 then

TG(x, y)− TGu→v(x, y) = (x+ y − xy)Pu,v(x, y)

and if distG(u, v) ≥ 3 then

TG(x, y)− (x− 1)TGu→v(x, y) = (x+ y − xy)Pu,v(x, y)

where Pu,v(x, y) is a polynomial with non-negative coefficients.

Proof. The cases uv ∈ E(G) and S = ∅ are dealt with the same way as in Theorem 3.1. As in that
proof, letting H = Gu→v we have

ZG(q, w)− ZH(q, w) =
∑

R∈{0,1}`
wr(ZGR

(q, w)− ZHR
(q, w)) (15)

where r is the number of contractions that took place under R in the formation of GR, HR. We
now use the previous lemmas to prove the following claim.

Claim 4.4. Equation (15) may be rewritten as

ZG(q, w)− ZH(q, w) =
∑
R∈R′′

w|V (G)|−|V (GR)|−t(w + 1)s(q + w)t(ZGR
(q, w)− ZHR

(q, w)) (16)

where s is the number of loops deleted and t is the number of bridges contracted in the formation of
GR (and thus HR as well), and R′′ consists of those R ∈ {0, 1}` such that no loops were contracted
and no bridges deleted in the formation of GR (and thus HR as well).

Proof. In the ordering {e1, . . . , e`} on S let i be the first index at which at least one R ∈ R has an
edge ei such that ei will be a contracted loop or deleted bridge in GiR, and say there are k ≥ 1 such
R. For any individual such R, by Lemmas 4.2 and 4.3, when ei will be a contracted loop (resp.
deleted bridge) in GiR we may assume that ei is also a contracted loop (resp. deleted bridge) in H i

R.
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The i-corresponding vectors for the k distinct R are necessarily distinct, and so using Lemma 4.1
we may combine all k such R terms with the k i-corresponding R′ terms as in Lemma 4.1. Since
after combining terms some R ∈ R now have no terms represented in the sum, now let Ri denote
those R ∈ R that remain after all term combinations at index i have been done.

Now let j > i be the next such index at which at least one R ∈ Rj has an edge ej such that

ej will be a contracted loop (resp. deleted bridge) in GjR. (It is possible that one or more of the
terms represented by these R are the product of a previous term combination.) We claim that
the j-corresponding vector R′ for any such R still exists in Ri. Say to the contrary that there is
R ∈ Ri with R′ /∈ Ri. Then R′ must have been eliminated as a result of using Lemma 4.1 during
the previous combination of terms at index i. But since R,R′ i-correspond then GiR′ and GiR are
identical, which would imply that the term represented by R would have been eliminated at index
i, a contradiction. Hence for any individual R ∈ Ri we may combine terms. As before if there
are k′ ≥ 1 such R ∈ Ri then the k′ i-corresponding vectors for these exist and, as before, are
necessarily distinct, and so all k′ pairs of terms combined as well. The same argument applies at
further indices, and so we may iterate this process until we reach R` = R′′ and no further loop
contractions or bridge deletions are present.

Examining Lemma 4.1, we see that for any R ∈ R′′ each individual loop deletion has resulted in
one 1 +w factor appearing, and at each bridge contraction a q +w factor has replaced a w factor.
Since there are |V (G)| − |V (GR)| ones in R, the equation (16) follows.

An important point here is that, since R′′ in (16) does not permit bridge deletions and G is
assumed to be connected, we now have that each GR is connected. This further implies that when
distG(u, v) ≤ 2 we also have HR connected and when distG(u, v) ≥ 3 we have that HR has two
components one of which is the isolate u. In particular, we emphasize that for any R ∈ R′′, none
of the vertices {xi}pi=1 of the GR, HR graphs are isolates.

For any individual R the calculations of ZGR
(q, w)−ZHR

(q, w) in the proof of Theorem 3.1 still
hold, and from (10) and (11) and (16) above we obtain that

ZG(q, w)− ZH(q, w) = q(1− q)
∑
R∈R′′

w|V (G)|−|V (GR)|−t(w + 1)s(q + w)tPR(q, w) (17)

where

PR(q, w) =

p∑
i=1

(w + 1)ci
(

(w + 1)ai − 1
)(

(w + 1)bi − 1
)∏
j<i

Sm′
j ,n

′
j
(q, w)

∏
j>i

Smj ,nj (q, w) (18)

with ai, bi, ci,mi, ni,m
′
i, n
′
i defined as in the proof of Theorem 3.1. We are now in a position to

apply the change of variables (12) by multiplying both sides of (17) by (x− 1)−1(y− 1)−|V (G)| and
substituting for q and w.

Doing so on the left-hand side of the equation, when distG(u, v) ≤ 2 then κ(E(G)) = κ(E(H)) =
1, and clearly |V (G)| = |V (H)|, so here the left side becomes TG(x, y)−TH(x, y). When distG(u, v) ≥
3 then κ(E(G)) = 1 and κ(E(H)) = 2 since u has been isolated. So here writing (x − 1)−1 as
(x− 1)−2(x− 1) the left side becomes TG(x, y)− (x− 1)TH(x, y).

We turn now to the right side of (17). We first consider its form after substituting for q and w,
leaving the multiplication by the prefactor (x − 1)−κ(E(G))(y − 1)−|V (G)| as a last step. After the
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substitution w = y − 1 the expression (w + 1)ci((w + 1)ai − 1)((w + 1)bi − 1) becomes

yci
(
yai − 1

)(
ybi − 1

)
= (y − 1)2yci

(
ai−1∑
k=0

yk

)(
bi−1∑
k=0

yk

)

where it is understood that
∑−1

k=0 y
k = 0. After the substitutions q = (x− 1)(y− 1) and w = y− 1,

the Smj ,nj (q, w) expression appearing in (18) becomes

(x− 1)(y − 1) + ymj + ynj − 2 = (y − 1)

x− 1 +

mj−1∑
k=0

yk +

nj−1∑
k=0

yk


where again

∑−1
k=0 y

k = 0, and a similar expression holds for Sm′
j ,n

′
j
(q, w). Finally, after substitution

the expression 1− q simplifies to x+y−xy, the expression w+ 1 simplifies to y, and the expression
q + w simplifies to x(y − 1). Therefore after these substitutions for q and w are complete the
right-hand side of equation (17) becomes

(x− 1)(y − 1)(x+ y − xy)
∑
R∈R′′

(y − 1)|V (G)|−|V (GR)|−tysxt(y − 1)t
p∑
i=1

{
(y − 1)2yci

(
ai−1∑
k=0

yk

)(
bi−1∑
k=0

yk

)

∏
j<i

(y − 1)

x− 1 +

m′
j−1∑
k=0

yk +

n′
j−1∑
k=0

yk

∏
j>i

(y − 1)

x− 1 +

mj−1∑
k=0

yk +

nj−1∑
k=0

yk


= (x− 1)(y − 1)p+2+|V (G)|−|V (GR)|(x+ y − xy)

∑
R∈R′′

ysxt
p∑
i=1

[
yci

(
ai−1∑
k=0

yk

)(
bi−1∑
k=0

yk

)

∏
j<i

x− 1 +

m′
j−1∑
k=0

yk +

n′
j−1∑
k=0

yk

∏
j>i

x− 1 +

mj−1∑
k=0

yk +

nj−1∑
k=0

yk


which, recalling that |V (GR)| = p+ 2, gives us

= (x− 1)(y − 1)|V (G)|(x+ y − xy)
∑
R∈R′′

ysxt
p∑
i=1

[
yci

(
ai−1∑
k=0

yk

)(
bi−1∑
k=0

yk

)

∏
j<i

x− 1 +

m′
j−1∑
k=0

yk +

nj−1∑
k=0

yk

∏
j>i

x− 1 +

mj−1∑
k=0

yk +

nj−1∑
k=0

yk


After multiplying by the prefactor (x− 1)−1(y− 1)−|V (G)|, then, we obtain that the right-hand side
of (17) is

(x+ y − xy)
∑
R∈R′′

PR(x, y)
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where each PR(x, y) is given by

PR(x, y) = ysxt
p∑
i=1

[
yci

(
ai−1∑
k=0

yk

)(
bi−1∑
k=0

yk

)
∏
j<i

x− 1 +

m′
j−1∑
k=0

yk +

n′
j−1∑
k=0

yk

∏
j>i

x− 1 +

mj−1∑
k=0

yk +

nj−1∑
k=0

yk

 . (19)

Looking at the bracketed expression, each polynomial PR(x, y) is non-negative if for each i = 1, . . . , p
at least one of mi, ni and at least one of m′i, n

′
i are non-zero. But this must be true since for each

R ∈ R′′ none of the vertices {xi}pi=1 in the non-u, v partite set are isolates. Thus each PR(x, y) is
a non-negative polynomial, which means Pu,v(x, y) is as well, and the proof is done.

We can also determine when the polynomial Pu,v(x, y) in Theorem 1.2 has positive coefficients,
and are also able to specify when Pu,v(x, y) is not divisible by x or y, useful facts since the Tutte
polynomial has a number of interesting evaluations when x = 0 and when y = 0.

Corollary 4.5. Let G be a connected graph with no loops or bridges, with u, v ∈ V (G), and let
Pu,v(x, y) be defined as in the previous theorem. Then

(a) Pu,v(x, y) is not divisible by x if and only if there exists a path in G− u− v between Auv and
Auv, and

(b) Pu,v(x, y) is not divisible by y if and only if there exists a path in G− u− v between Auv and
Auv that does not include any vertices of Auv.

In particular, Pu,v(x, y) has at least one positive coefficient if and only if there exists a path in
G − u − v between Auv and Auv, and Pu,v(x, y) has a positive constant term if and only if such a
path exists that avoids Auv.

Proof. From (19) in the previous proof we have that Pu,v(x, y) =
∑

R∈R′′ PR(x, y), where, in terms
of ai, bi, ci,

PR(x, y) = ysxt
p∑
i=1

[
yci

(
ai−1∑
k=0

yk

)(
bi−1∑
k=0

yk

)
∏
j<i

x− 1 +

cj−1∑
k=0

yk +

aj+bj+cj−1∑
k=0

yk

∏
j>i

x− 1 +

aj+cj−1∑
k=0

yk +

bj+cj−1∑
k=0

yk

 .
For part (a), first suppose that a path between Auv and Auv in G exists. Let F be a maximal
spanning forest of G − u − v that contains the path. By reordering the edges of G − u − v if
necessary we may assume that the edges of F are the first edges in the edge order. Let R be the
binary vector with ri = 1 whenever ei ∈ E(F ) and ri = 0 when ei /∈ E(F ). By maximality of F and
choice of the edge ordering we have R ∈ R′′, i.e. no loops are contracted and no bridges deleted in
the formation of GR.

Since G itself is bridgeless, the edge ordering ensures no bridges are contracted in the formation
of GR, and so we have t = 0 in PR(x, y). Now let xi denote the vertex in GR resulting from the
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contraction of the component of F containing the path from Auv and Auv, we have ai ≥ 1 and
bi ≥ 1. It is easy to see this implies that none of the parenthetical expressions above may be zero or
x, and hence PR(x, y) is non-zero and not divisible by x. Since Pu,v(x, y) is the sum of non-negative
polynomials, this implies Pu,v(x, y) is non-zero and not divisible by x. In particular, Pu,v(x, y) is
not the zero polynomial, and thus positive. Similarly in the other direction, if Pu,v(x, y) is not
divisible by x then some PR(x, y) must be positive and not divisible by x. This implies an R for
which ai ≥ 1 and bi ≥ 1, and thus the existence of the given path.

For part (b), if the given path exists we take F to be a maximal spanning forest of G−u−v−Auv
that contains the path. Now choose an edge ordering such that the edges of F are last in the edge
order, and again let R be the binary vector with ri = 1 whenever ei ∈ E(F ) and ri = 0 when
ei /∈ E(F ). We have R ∈ R′′ since no loops are contracted and no bridges deleted in the formation
of GR. Furthermore, the edge ordering ensures no loops are deleted in the formation of GR and so
s = 0 in PR(x, y), and for the vertex xi in GR which corresponds to the vertices of the contracted
path we have ai ≥ 1, bi ≥ 1 and ci = 0. From this it is easy to see that PR(x, y), and hence
Pu,v(x, y), is not divisible by y. The converse follows in a parallel fashion as for the x variable.

5 The (n,m) Tutte polynomial poset

If G,H are two connected graphs with n vertices and m edges, then the difference of their Tutte
polynomials must necessarily have x+y−xy as a factor. To see this, recall that the Tutte polynomial
of G may be defined as

TG(x, y) =
∑

A⊆E(G)

(x− 1)κ(A)−κ(E(G))(y − 1)|A|−n+κ(A)

where κ(A) is the number of components of the graph defined by the edges of A [20]. Since
|E(G)| = |E(H)| = m there is a bijection taking any subset AG ⊆ E(G) to a subset AH ⊆ E(H)
with |AG| = |AH |. For AG, AH corresponding in this bijection, the difference of the corresponding
terms in the definition above is

(x− 1)κ(AG)−1(y − 1)|AG|−n+κ(AG) − (x− 1)κ(AH)−1(y − 1)|AH |−n+κ(AH)

= (x− 1)κ(AH)−1(y − 1)|AH |−n+κ(AH)
(

((x− 1)(y − 1))κ(AG)−κ(AH) − 1
)

where we have taken κ(AG) ≥ κ(AH). (If κ(AG) ≤ κ(AH) then the same expression results with
the G and H subscripts reversed.) A simple induction now shows that ((x− 1)(y − 1))k − 1 has a
factor of x+ y − xy for any k ≥ 1, and the result follows.

The key feature of Theorem 1.2, then, is that the polynomial Pu,v(x, y) is a positive polynomial.
TG(x, y) is in a natural sense “larger” than TGu→v(x, y) then, and as we will see it is this relationship
that carries over to a wide array of graph parameters associated with the Tutte polynomial. To
capture this phenomenon we make the following definitions.

Definition 5.1. Let Gn,m denote the set of simple connected graphs with n vertices and m edges.
The (n,m) Tutte polynomial poset (Gn,m,4) is the poset defined on Gn,m by H 4 G if and only if

TG(x, y)− TH(x, y) = (x+ y − xy)P (x, y)

for some polynomial P (x, y) with non-negative coefficients. If P (x, y) 6= 0 we may indicate this by
H ≺ G.
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If P (x, y) = 0 then TG(x, y) = TH(x, y) and G and H are Tutte polynomial equivalent or T -
equivalent graphs. If G 4 H and H 4 G we may also write G ∼= H to indicate G,H are Tutte
polynomial equivalent. The (n,m) Tutte polynomial poset thus is more precisely a poset on the
equivalence classes of the graphs of Gn,m with G,H equivalent if and only if T -equivalent, but there
will be no problem if we allow any representative of an equivalence class to represent the class as
a whole. We note that, while the distG(u, v) ≤ 2 case of Theorem 1.2 shows that compression is a
tool for moving downward in the Tutte polynomial poset, the G 4 H relation is more general than
compression. In the next section a small (n,m) Tutte polynomial poset, the (6, 9) Tutte polynomial
poset, is given which illustrates this.

The (n,m) Tutte polynomial poset relation 4 appears to capture much of the graphical infor-
mation carried by the Tutte polynomial, in that H 4 G typically implies p(H) ≤ p(G) when p is a
graphical parameter that can be obtained from the Tutte polynomial of a graph. In the rest of this
section we give some examples of these parameters; these examples are by no means exhaustive but
hopefully justify our definition by giving some idea of the scope of the parameters in question.

We begin by considering evaluations of the Tutte polynomial.

Theorem 5.2. Let x, y ≥ 0, and let G,H ∈ Gn,m. If H 4 G then

TH(x, y) ≤ TG(x, y)

when (x− 1)(y − 1) < 1, and
TG(x, y) ≤ TH(x, y)

when (x− 1)(y − 1) > 1.

Proof. If H 4 G then

TG(x, y)− TH(x, y) = (x+ y − xy)P (x, y) = (1− (x− 1)(y − 1))P (x, y)

where P (x, y) is a polynomial with non-negative coefficients. In the first quadrant P (x, y) ≥ 0, and
the result follows.

We remark that for general graphs the first quadrant boundary of Theorem 5.2 is best possible
in the following sense. If G′ indicates the graph G with a pendant edge appended, then TG′(x, y) =
xTG(x, y), and therefore appending a pendant edge to both G and H would negate any given
evaluation in the second and third quadrant (where x is negative). Thus for any point (x, y)
in those quadrants the inequality TH(x, y) ≤ TG(x, y), for example, would imply the opposite
inequality TH′(x, y) ≥ TG′(x, y) for the appended graphs. Similarly appending a loop would reverse
any inequality in the third and fourth quadrants where y is negative.

Evaluating TG(x, y) at (1, 1) gives the number of spanning trees of G and evaluations on the
half-line above (1, 1) correspond to evaluations of the all-terminal reliability polynomial RelG(p) at
various values of p. A wide variety of other graph parameters, however, also appear here. Among
the most prominent, the spanning forests of G are enumerated at (2, 1) and spanning connected
subgraphs at (1, 2) (see for instance [20]), and a number of evaluations related to orientations also
appear here: the number of acyclic orientations can be found at (2, 0) [42], totally cyclic orientations
at (0, 2) [23], acyclic orientations with a single source at (1, 0) [30], and score vectors of orientations
at (2, 1) [43]. Most recently a number of enumerations related to partial orientations—where some
edges of G are oriented but others left unoriented—have been shown to correspond to (a constant
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multiple times) evaluations at (3, 1/2), (1/2, 3), (3, 1), (1, 3) and others [1]. All of these fall in the
region where (x − 1)(y − 1) < 1, so H 4 G here implies that p(H) ≤ p(G) for p any of these
parameters. On the other hand, the positive branches of the hyperbolas (x−1)(y−1) = q for q > 1
all fall in the region where (x− 1)(y− 1) > 1. Evaluations along these correspond to evaluations of
the q-state Potts model ZG(q, w) for various q ≥ 1 [45], and so H 4 G implies ZH(q, w) ≥ ZG(q, w)
here. (This is one of the few examples we can find of a widely known graph parameter which acts
in the opposite direction of the relation 4.)

Since Gu→v 4 G when distG(u, v) ≤ 2, the following corollary is immediate, with the conditions
for strict inequality following directly from Corollary 4.5.

Corollary 5.3. Let x, y ≥ 0. Let G be a connected graph with u, v ∈ V (G) be such that distG(u, v) ≤
2. Then

TGu→v(x, y) ≤ TG(x, y)

when (x− 1)(y − 1) < 1, and
TG(x, y) ≤ TGu→v(x, y)

when (x − 1)(y − 1) > 1. Furthermore if G has no loops or bridges and a path from Auv to Auv
exists then the inequalities are strict whenever y > 0, and if G has no loops or bridges and such a
path exists avoiding Auv then the inequalities are strict for all x, y ≥ 0.

Corollary 5.3 contains within it the compression results of [5, 38, 28] on spanning trees and
reliability, but encompasses quite a bit more. Compression in fact decreases all of the evaluations
previously mentioned, except evaluations of the q-state Potts model, which it increases. (This last
fact is probably more clearly shown by Theorem 3.1.) We also note that when x ≥ 2 then the
inequalities above also hold for compressions at distG(u, v) ≥ 3. This is clear from examination of
the distG(x, y) ≥ 3 equation of Theorem 1.2.

We turn now to specializations of the Tutte polynomial, that is, other polynomials of graphs
that may be obtained from the Tutte polynomial. Any evaluation of a polynomial specialization
of TG(x, y) corresponds, of course, to some evaluation of TG(x, y), and so we focus here instead on
another aspect of polynomial specializations, their coefficients. We begin with generating functions.
A number of specializations of the Tutte polynomial TG(x, y) produce generating functions whose
coefficients correspond to certain parameters of G. For example, it is well-known [20] that for a
connected graph G,

tTG(t+ 1, 1) =
n∑
i=1

fi(G)ti

is a generating function with each fi(G) equal to the number of forests of G with i components,
and

TG(1, t+ 1) =

m−n+1∑
i=0

gi(G)ti

is a generating function with each gi(G) equal to the number of spanning connected subgraphs of
G with i+ n− 1 edges. Using this notation, the following is a straightforward consequence.

Theorem 5.4. If H 4 G then

fi(H) ≤ fi(G) and gj(H) ≤ gj(G)

for all i = 1, . . . , n and j = 0, . . . ,m − n + 1. In particular, when distG(u, v) ≤ 2 then the above
holds for H = Gu→v.
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Proof. Substituting either x = t+ 1, y = 1 or x = 1, y = t+ 1 into x+ y − xy yields 1, and so

TG(t+ 1, 1)− TH(t+ 1, 1) = P (t+ 1, 1)

and
TG(1, t+ 1)− TH(1, t+ 1) = P (1, t+ 1)

where P has all non-negative coefficients. Therefore the coefficients of the generating functions
given cannot have increased after compression, giving the result.

The conditions for strict inequality given by Corollary 4.5 are somewhat less useful here; when
met, we are only guaranteed that at least one of the generating function coefficients has decreased,
and which coefficient or coefficients is not immediately apparent.

Many other generating functions of interest are specializations of the Tutte polynomial and, as
in the proofs of Theorems 5.2 and 5.4, as long as positive expressions are substituted for x, y these
essentially reduce to checking what happens with the x+y−xy factor in Theorem 1.2. To illustrate
with a few more examples, the generating function of the number of critical configurations of level
i of the Abelian sandpile model on G is given by TG(1, t) [33], or looking again at orientations,
certain types of partial orientations have generating functions equivalent to (a constant multiple
times) TG(2 + t, 1/(1 + t)) and TG(1 + 2t, 1/2) [21]. It is easy to check that the resulting x+ y−xy
factor for these substitutions reduces to a positive function, and hence H 4 G implies a decrease
in these parameters as well. A more complicated example involves fourientations of G, where each
edge may be oriented in either direction, in both directions, or left unoriented. In [2] the trivariate
generating functions

(j + k)n−1(k + l)m−n+1TG

(
αk + βl + j

j + k
,
γk + l + δj

k + l

)
for α, γ ∈ {0, 1, 2} and β, δ ∈ {0, 1} were shown to enumerate a wide variety of different types of
fourientations, generalizing a number of previous results on orientations and partial orientations of
G. The expressions for x, y above are clearly positive, and after substituting those expressions in
x+ y − xy and some algebraic simplification (which we omit) we obtain

(γ + α− αγ)k2 + (1 + β − βγ)kl + (1 + δ − δα)jk + (1− βδ)jl
(j + k)(k + l)

which is non-negative for the values of α, β, γ, δ permitted. Here too, then, all of the quantities enu-
merated by these generating functions can only decrease as we move downward in the (n,m) Tutte
polynomial poset, and hence compression (at distG(u, v) ≤ 2) cannot increase these quantities.

We turn now to other well-known polynomials which may be obtained as specializations of
the Tutte polynomial. The all-terminal reliability polynomial, mentioned in the Introduction, is
a polynomial in the variable p. In addition to the usual polynomial basis pi, however, RelG(p) is
commonly written with respect to different bases, as the coefficients in these forms then acquire
useful combinatorial information (see for example [12]). In its so-called S-form, for example, it is
written as

RelG(p) =

m−n+1∑
i=0

gi(G)pi+n−1(1− p)m−n+1−i
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where the coefficients are the gi(G) defined as in Theorem 5.4, and in its H-form it is written as

RelG(p) = pn−1
m−n+1∑
i=0

hi(G)(1− p)i. (20)

Given these definitions it is now an immediate consequence of Theorem 5.4 that the coefficients of
RelG(p) in its S-form decrease under compression or, more generally, decrease when descending the
(n,m) Tutte polynomial poset. And a result of [9], on compression’s effect on theH-form coefficients
of the all-terminal reliability polynomial, also becomes now a straightforward calculation.

Theorem 5.5. Let G,H ∈ Gn,m. If H 4 G then hi(H) ≤ hi(G) for all i = 0, . . . ,m−n+ 1, where
the hi are the coefficients of the all-terminal reliability polynomial in its H form. In particular,
when distG(u, v) ≤ 2 then the above holds for H = Gu→v.

Proof. As mentioned in the Introduction the specialization of the Tutte polynomial to the all-
terminal reliability polynomial is

RelG(p) = pn−1(1− p)m−n+1TG(1, 1/(1− p)).

Combining this and (20) we have

m−n+1∑
i=0

(hi(G)− hi(H))(1− p)i−m+n−1 = TG(1, 1/(1− p))− TH(1, 1/(1− p)) = P (1, 1/(1− p))

where the polynomial P is as given by Theorem 1.2. Thus H 4 G implies hi(H) ≤ hi(G), and so
the coefficients of the H-form of the all-terminal reliability polynomial decrease as well.

Perhaps the best-known specializations of the Tutte polynomial are the chromatic and flow
polynomials. Unlike the previously seen generating functions or the S and H all-terminal reliability
forms, these polynomials have negative coefficients. (It is well-known that they alternate in sign.)
Here we can show that the magnitude of the coefficients decreases as we move downward in the
poset. For the chromatic polynomial we can also show that this holds for compression at any u, v
distance, a result first shown by Csikvári [14]. Theorem 1.2 provides a short algebraic proof of this.

Theorem 5.6. Let χG(λ) denote the chromatic polynomial of a connected graph G and let ci(G)
denote its coefficients. If H 4 G then

|ci(G)| ≥ |ci(H)|

for all i = 1, . . . , n. In addition, for u, v ∈ V (G) at any distance we have

|ci(G)| ≥ |ci(Gu→v)|

for all i = 1, . . . , n.

Proof. We only do the compression argument, as the argument forH 4 G parallels the distG(u, v) ≤
2 case. As given in the Introduction, the chromatic polynomial is

χG(λ) = (−1)|V |−κ(E(G))λκ(E(G))TG(1− λ, 0).
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Since we are only concerned with the magnitude of the coefficients, it is convenient to consider

χG(λ) = λκ(E)TG(1 + λ, 0)

which has the same coefficients as χG(λ) but with coefficients all non-negative. When distG(u, v) ≤
2, we have κ(E(G)) = κ(E(Gu→v)) = 1. By Theorem 1.2 then we have

χG(λ)− χGu→v
(λ) = λ(TG(1 + λ, 0)− TGu→v(1 + λ, 0)) = λ(1 + λ)P (1 + λ, 0)

which is a polynomial with non-negative coefficients as required.
When distG(u, v) ≥ 3 compression from u to v renders u an isolate and we have κ(E(Gu→u)) =

2. By Theorem 1.2 we have

TG(x, y)− (x− 1)TGu→v(x, y) = (x+ y − xy)P (x, y).

Multiplying the above by λ and substituting x = 1 + λ, y = 0 we obtain

λTG(1 + λ, 0)− λ2TGu→v(1 + λ, 0) = λ(1 + λ)P (1 + λ, 0)

or
χG(λ)− χGu→v

(λ) = λ(1 + λ)P (1 + λ, 0)

as in the previous case.

When distG(u, v) ≤ 2 the same type of result holds for the flow polynomial. (When distG(u, v) ≥
3 compression can increase the flow polynomial’s coefficients. A simple example of this takes
G = P4, the path on four vertices, with u, v the endvertices of the path. The flow polynomial of a
path is the zero polynomial, but the flow polynomial of Gu→v = C3 ∪K1 is not.) In terms of the
Tutte polynomial, the flow polynomial of a connected graph G is given by

FG(y) = (−1)|E(G)|−|V (G)|+1TG(0, 1− y).

In the same manner as in the distG(u, v) ≤ 2 case of the chromatic polynomial therefore we have
the following, whose proof is omitted.

Theorem 5.7. Let FG(y) denote the flow polynomial of a connected graph G, let bi(G) for i =
1, . . . ,m− n+ 1 denote its coefficients. If H 4 G then

|bi(G)| ≥ |bi(H)|

for all i = 1, . . . , |E(G)| − |V (G)|+ 1. In particular, when distG(u, v) ≤ 2 then the above holds for
H = Gu→v.

The coefficients of the Tutte polynomial itself have various interpretations. Let tij denote the
coefficient of the xiyj term of TG(x, y). Then tij counts the number of spanning trees of G with
certain measures of internal and external activity; we omit the definitions here, but for more details
see for instance [8]. When H 4 G then by looking at the expanded form of (x + y − xy)P (x, y)
Theorem 1.2 gives immediately that ti0(G) ≥ ti0(H) and t0j(G) ≥ t0j(H) for any i or j in the
appropriate ranges. One of these coefficients is of particular note. The coefficient of the x term
and the coefficient of the y term of TG(x, y) (it is known the two coefficients must be equal, unless
G has just one edge) is equal to Crapo’s beta invariant β(G) [20], first introduced in [13] in the
context of matroids. When H 4 G we see that β(G) − β(H) = c where c is the constant term
of P (x, y), which immediately gives the following. The path conditions for strict inequality again
follow from Corollary 4.5.
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Theorem 5.8. If H 4 G then β(H) ≤ β(G). In particular, when distG(u, v) ≤ 2 then β(Gu→v) ≤
β(G), with β(Gu→v) < β(G) if and only if there exists a path in G − u − v from Auv to Auv that
avoids Auv.

The parameter β(G) is also known to equal a particular evaluation of the derivative of the
chromatic polynomial [20], and with regard to orientations the number 2β(G) is known to give the
number of orientations of G that have a unique source and sink (over all possible sources and sinks)
[31], and so H 4 G implies a decrease in those quantities.

6 Threshold graphs and the Tutte polynomial

The distG(u, v) ≤ 2 case of Theorem 1.2 demonstrates that compression is a tool for descending
(n,m) Tutte polynomial posets, i.e., Gu→v 4 G, with Corollary 4.5 giving conditions which ensure
Gu→v ≺ G. To illustrate, a Hasse diagram of the (6, 9) Tutte polynomial poset is given in Figure 2.
In Figure 2, when a Hasse diagram descent is an immediate result of a compression we have indicated
those edges in red, but typically compression involves a descent of multiple levels. To mention just
one example of compression effects not pictured, if we let Gmin indicate the minimum graph in the
poset, then more than half the graphs in the poset have vertices u, v such that Gu→v ∼= Gmin.

A notable feature of Figure 2 is that the minimum graph in the (6, 9) Tutte polynomial poset
shown is a threshold graph. Threshold graphs are a well-known and much studied class of graphs
(see e.g. [32]) and there are many equivalent ways to define them. With regard to compression
one of the more illuminating definitions involves a dominance relation on vertices. We say vertex
v dominates vertex u in G if NG(u) ⊆ NG[v], where NG[v] is the closed neighborhood NG[v] =
NG(v) ∪ v. A threshold graph can be defined as a graph G in which, given any pair of vertices
u, v ∈ V (G), either u dominates v or v dominates u. It is easy to see that when Gu→v 6= G then
the compression of G from u to v takes two vertices u, v ∈ V (G) which do not dominate each
other and produces a new graph Gu→v in which v does dominate u. After compression, then, the
new graph Gu→v will be “more threshold” than the original graph G and continued application
of compression (with different pairs of vertices) can only increase this. As noted by a number of
authors [5, 6, 14, 16, 17, 38], eventually this process produces a threshold graph, and if G was
connected then by taking all compressions to be at distance 2 or less we can take the eventual
threshold graph to be connected as well, facts which appeared as Theorem 1.1 in the Introduction.

An immediate consequence of these theorems and Theorem 1.1 then is that threshold graphs
are minimal in the (n,m) Tutte polynomial posets.

Theorem 6.1. For any n,m and any graph G ∈ Gn,m, there exists a threshold graph H ∈ Gn,m
such that H 4 G.

Therefore threshold graphs are extremal graphs for all the parameters considered in the previous
section. To be explicit, in terms of evaluations of the Tutte polynomial we have the following.

Corollary 6.2. Let x, y ≥ 0. Then for any connected simple graph G there exists a connected
threshold graph H with the same number of vertices and edges such that

TG(x, y) ≥ TH(x, y)

when (x− 1)(y − 1) < 1, and
TG(x, y) ≤ TH(x, y)
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Figure 2: The (6, 9) Tutte polynomial poset. If multiple graphs have the same Tutte polynomial
only one graph is shown. As one moves downward in the poset, a wide variety of graph parameters
associated with the Tutte polynomial decrease. The two graphs shown in boxes are threshold
graphs. Red poset edges indicate that the lower graph (or a graph Tutte-equivalent to it) may be
obtained from the upper graph via compression.
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when (x− 1)(y − 1) > 1.

As in Theorem 5.2, this implies that threshold graphs are minimal for a number of graph
parameters, i.e., for every G ∈ Gn,m there is a threshold H ∈ Gn,m such that H has fewer spanning
trees, spanning forests, or spanning connected subgraphs of G; lower all-terminal reliability of G,
for any edge probability p; and fewer of any of a variety of different types of orientations, partial
orientations, and fourientations. The spanning tree and all-terminal reliability results implicit in
Theorem 6.2 recover the extremality results of [5, 38]. On the other hand, threshold graphs are
maximal for evaluations of the q-state Potts model for q ≥ 1. The situation is similar for the
specializations of the Tutte polynomial. For any connected simple graph G ∈ Gn,m there exists
a connected threshold graph H ∈ Gn,m with ci(H) ≤ ci(G), where ci(G) is the magnitude of
the ith coefficient of any of the following polynomials: the chromatic polynomial χ(G); the flow
polynomial F (G); the all-terminal reliability polynomial RelG(p) (in either its S or H forms);
and all of the generating functions mentioned in the previous section. The chromatic coefficient
result here recovers the extremality results of Csikvári [14] and Rodriguez and Satyanarayana [37]
mentioned in the Introduction.

v

u

Figure 3: A planar graph G with non-planar compression Gu→v.

In our results so far we have been careful to consider only parameters of general graphs. There
are a number of other parameters, however, that may be obtained from the Tutte polynomial that
are specific only to particular graph subclasses. As an example, when G is planar then evaluations
of TG(x, y) along the line x = y enumerate various structures associated with the medial graph
of G [18, 19]. When both G and H are planar then analysis of these parameters goes along in a
similar manner to what has been shown. However in the context of compression we do note that
compression of a graph G from u to v may or not preserve planarity (or other graph properties)
depending upon which u and v are selected. Figure 6 gives a simple example of a planar graph
G with two vertices u, v that has a non-planar compression Gu→v. It is clear how to adapt that
example to obtain, for any given forbidden subgraph F , a graph G that does not contain F but
whose compression Gu→v does contain F .

It may also be worth mentioning here, however, that for some classes of graphs it has been
shown possible via judicious choice of the u, v vertices compressed upon to maintain membership
in the class. For instance using this approach Bogdanowicz [7] showed that any simple 2-connected
chordal graph may be transformed into a 2-connected threshold graph via a series of compressions.
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Theorem 1.2 and Theorem 1.1 thus gives that threshold graphs are minimizers in this subclass of
graphs as well.

Theorem 6.3. For any 2-connected chordal graph G ∈ Gn,m, there exists a 2-connected threshold
graph H ∈ Gn,m such that H 4 G.

Returning now to planar graphs, one class of widely studied planar graphs are the 2-trees. A
2-tree Gt is a graph constructed recursively by taking G0 = K3, and at each step 1 ≤ i ≤ t selecting
one edge of Gi−1 and adding a path of 2 edges between the endvertices of that edge. 2-trees are
both chordal and 2-connected, and it is easily verified that there is a unique threshold 2-tree: the
2-tree in which all t of the paths have been added to the same edge of the initial triangle. Calling
this 2-tree Bt, we have identified the minimizing graph for one planar class of graphs, the 2-trees.

Corollary 6.4. If Gt is a 2-tree, then Bt 4 Gt.

In [44] it was shown that Bt was the minimum 2-tree for spanning trees. Corollary 6.4 significantly
generalizes this result, and in a much easier manner.

We also briefly raise the question of maximal graphs in the (n,m) Tutte polynomial posets.
This problem appears to be more difficult than the minimality problem. Some guidance here comes
from work identifying extremal graphs for spanning trees and reliability. With regard to reliability,
it is known for example that certain (n,m) classes have no uniformly most reliable graphs. The
smallest such class, determined in [34], is (6, 11), and it is not hard to verify that the (6, 11) Tutte
polynomial poset does not have a unique maximum element, instead having two maximal graphs.
(The two graphs have 2P3 and P4 ∪ P2 as their complements, respectively.) On the other hand, in
(n,m) classes that do have uniformly most reliable graphs these graphs may be good candidates
for maximum elements. These graphs necessarily also have the maximum number of spanning
trees in the class, and these graphs, often called t-optimal graphs, may also be good candidates
for maximum elements of the corresponding (n,m) Tutte polynomial posets. Less promisingly,
however, t-optimal graphs are currently known only for edge dense graphs [22, 27, 36, 39], edge
sparse graphs [3], or regular or almost regular graphs [11, 36], and it is not entirely clear what
these maximum graphs have in common. We are not aware even of any conjectures about general
features of t-optimal graphs for all (simple) values of n,m.

For the most edge dense graphs we can generalize the t-optimal results to an (n,m) Tutte
polynomial poset result, which we do below, but we make no attempt to obtain any other maximal
results here.

Theorem 6.5. Let k,m, n be such that 0 ≤ k ≤ n/2 and m =
(
n
2

)
− k. If H ∈ Gn,m then H 4Mk,

where Mk is the complete graph Kn with any set of k independent edges removed.

Proof. Assume to the contrary that there exists some graph in the poset that is either incomparable
to Mk or greater than Mk in the poset. Let H be such a graph that is maximal in the poset. For
these values of k the graph H must contain a vertex v of degree n − 1 and a vertex u of degree
n− 3 or less. Since u and v are adjacent, given the disparity in degrees there must be at least two
vertices, call them x, y, adjacent to v but not u. But then letting G be identical to H but with x
adjacent to u instead of v, we have Gu→v = H. Clearly there exists a path in G from Auv to Auv,
and so H ≺ G and H cannot be maximal in the (n,m) Tutte polynomial poset. This contradiction
proves the result.

24



While not every (n,m) Tutte polynomial poset has a unique maximum element, we conclude
however with a conjecture that for any Gn,m the (n,m) Tutte polynomial poset does have a minimum
element. The graphs corresponding to these minimums must, of course, be T -equivalent to a
threshold graph, and we now describe the form of the threshold graph that we believe corresponds
to this minimum.

Another useful way to define threshold graphs is as a subclass of split graphs, graphs whose vertex
sets can be partitioned into two sets, one of which induces a clique and the other of which induces an
independent set. A threshold graph is a split graph in which the vertices of the independent set have
nested neighborhoods [32]. Informally, our conjectured minimum graphs are obtained by making
the clique part as large as possible and then, when connecting the vertices of the independent set to
the clique, making as many degree one vertices as possible. Formally, let k be the least integer such
that m ≥

(
n−k
2

)
+ k. Then the graph Ln,m is the threshold graph consisting of an (n − k)-clique,

and k − 1 pendant vertices and one vertex of degree m−
(
n−k
2

)
− k + 1 attached to the clique.

Conjecture 6.6. For any G ∈ Gn,m, we have Ln,m 4 G.

Some evidence in support of the above conjecture comes again from spanning trees, all-terminal
reliability, and chromatic coefficients. In [6] it was proven that the Ln,m graphs minimize τ(G),
and in [37] the magnitudes of the coefficients of χ(G) were also shown to be minimized by the Ln,m
graphs. It is a long-standing conjecture of Boesch et al. [4] that the graphs Ln,m minimize RelG(p).
That conjecture is still open; proving Conjecture 6.6 would of course prove that conjecture, as well
as recover the spanning tree and chromatic polynomial results.
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