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Abstract

Boesch, Li, and Suffel were the first to identify the existence of uniformly optimally reliable
graphs (UOR graphs), graphs which maximize all-terminal reliability over all graphs with n
vertices and m edges. The all-terminal reliability of a graph, and more generally a graph’s
all-terminal reliability polynomial R(G; p), may both be obtained via the Tutte polynomial
T (G;x, y) of the graph G. Here we show that the UOR graphs found earlier are in fact maximum
graphs for the Tutte polynomial itself, in the sense that they are maximum not just for all-
terminal reliability but for a vast array of other parameters and polynomials that may be
obtained from T (G;x, y) as well. These parameters include, but are not limited to, enumerations
of a wide variety of well-known orientations, partial orientations, and fourientations of G; the
magnitudes of the coefficients of the chromatic and flow polynomials of G; and a wide variety of
generating functions, such as generating functions enumerating spanning forests and spanning
connected subgraphs of G. The maximality of all of these parameters is done in a unified way
through the use of (n,m) Tutte polynomial posets.

1 Introduction

The all-terminal reliability of a connected graph G, denoted R(G; p), is the probability that G
remains connected when edges fail independently with probability p. It is well-known that R(G; p)
can be written as a polynomial in terms of p whose coefficients carry important combinatorial
information about G, see for example [12]. Let Gn,m denote the class of connected graphs with
n vertices and m edges. It is possible for the graphs of the all-terminal reliability polynomials of
two distinct graphs G,H ∈ Gn,m to intersect on the interval p ∈ (0, 1), once or even multiple times
[13, 20]. In terms of network strength, this means that when comparing two network topologies
that use the same number of nodes and links, it may be the case that neither network is uniformly
best: which network is stronger may depend upon the value of p. As a consequence, for some values
of n,m there may be no best network topology, in other words there may be no graph H ∈ Gn,m
such that R(H; p) ≥ R(G; p) for all G ∈ Gn,m and all p ∈ (0, 1). This phenomenon has in fact been
shown to occur for various values of n,m [9, 19, 23].

However in 1991, Boesch, Li, and Suffel were the first to determine that there were Gn,m classes
for which uniformly optimally reliable graphs (or more simply UOR graphs) existed, that is, there
were classes Gn,m and graphs H ∈ Gn,m for which R(H; p) ≥ R(G; p) for all G ∈ Gn,m and all
p ∈ (0, 1). In terms of networks, UOR graphs are the best network topologies on n nodes and m
links, regardless of edge failure probability p. Since then other Gn,m classes with UOR graphs have

1

kahlnath@shu.edu
kristi.luttrell@shu.edu


been identified, and in fact a rich literature has grown up around UOR graphs and all-terminal
reliability in general, see for example the surveys [1, 6, 8, 12, 25].

The Tutte polynomial T (G;x, y) of a graph G is a multivariate polynomial which encodes a
vast array of structural features of the graph G. One of these structural features is the all-terminal
reliability R(G; p). We will say more about the definition and computation of T (G;x, y) later, for
now we give some idea of the scope of these structural features, beyond all-terminal reliability.
Various evaluations of T (G;x, y) have been shown to give the number of spanning trees, spanning
forests, and spanning connected subgraphs of G [14]; the number of various types of orientations
of G, including acyclic orientations [26], totally cyclic orientation [16], and acyclic orientations
with a single source [21]; various types of partial orientations of G, where edges may be either
oriented or unoriented [2, 15]; and various types of fourientations of G, where edges may be either
oriented, unoriented, or bidirectionally oriented [3]. The Tutte polynomial T (G;x, y) can also be
specialized to various other well-known graph polynomials of G, including the all-terminal reliability
polynomial R(G; p), but others here include the chromatic polynomial and flow polynomial [14, 28];
various generating functions including generating functions for spanning forests of i components,
and spanning connected subgraphs of i edges [14]; generating functions relating to orientations,
partial orientations, and fourientations of a graph [15, 3]; and the generating function for the
number of critical configurations of level i of the Abelian sandpile model [22]. In general, T (G;x, y)
has been shown to encode any graph invariant which obeys a deletion-contraction law, a property
sometimes called the universality property of the Tutte polynomial. For more information on the
Tutte polynomial and its applications we refer the reader to the surveys [10, 14, 24, 28].

Given that such a wide variety of graph parameters and polynomials have the Tutte polynomial
as a common generalization, it is natural to ask how strongly these evaluations and specializations
may be related. If H ∈ Gn,m is a UOR graph in Gn,m, for example, does that mean that H has
more acyclic orientations than every other G ∈ Gn,m? Or vice-versa, does identifying an H ∈ Gn,m
with the most acyclic orientations also serve to identify the UOR graph in that class? Clearly many
other relationships between Tutte parameters can be explored as well.

Unfortunately, although unsurprisingly, identifying an H ∈ Gn,m that maximizes one of the
many Tutte polynomial parameters is no guarantee that H maximizes others. One of the smallest
examples here occurs in the class G7,11. Two graphs from that class are pictured in Figure 1, one
of which is maximum for all-terminal reliability (i.e., is the UOR graph for the class) and also
maximizes certain other Tutte polynomial parameters, while the other maximizes different Tutte
polynomial parameters, for example acyclic orientations.1

However, somewhat in parallel with the UOR graph phenomenon mentioned earlier, just because
some graph classes do not have such a “maximum” graph for the Tutte polynomial does not mean
that all graph classes do not. In fact some graph classes contain graphs that are maximum for the
Tutte polynomial for a remarkable variety of graph parameters, including all of the ones previously
listed. We are able to identify these Tutte-maximum graphs in a unified way by using the recently
developed (n,m) Tutte polynomial posets [18].

An (n,m) Tutte polynomial poset, abbreviated to Tutte poset if the Gn,m class is arbitrary or
clear, was shown in [18] to capture to a remarkable extent the behavior of graph parameters that
may be obtained from the Tutte polynomial. The poset is defined by the relation G 4 H if and

1These graphs and other graphs in the class they belong to were checked using the Mathematica program, whose
TuttePolynomial command can generate Tutte polynomials of specific graphs and whose GraphData database contains
all connected graphs on 7 or fewer vertices.
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only if
T (H;x, y)− T (G;x, y) = (x+ y − xy)P (x, y)

for some polynomial P (x, y) with non-negative coefficients. Specifically, the relation defined above
implies the following.

Theorem 1.1 ([18]). Let G,H ∈ Gn,m be such that G 4 H, in other words

T (H;x, y)− T (G;x, y) = (x+ y − xy)P (x, y) (1)

where P (x, y) is a polynomial with non-negative coefficients. Then

1. we have ρ(G) ≤ ρ(H) for all of the Tutte polynomial parameters previously mentioned (span-
ning trees, etc.)

2. we have |ci(G)| ≤ |ci(H)| for any i, where ci stands for the ith coefficient of the Tutte poly-
nomial specializations previously mentioned (chromatic, etc.).

Thus G 4 H implies not just maximality of the all-terminal reliability, i.e., R(H; p) ≥ R(G; p)
for all p ∈ (0, 1), but in fact implies each coefficient of R(H; p) is larger in absolute value than
the corresponding coefficient in R(G; p). And similar statements follow for other Tutte polynomial
parameters and other polynomial specializations of the Tutte polynomial. We note that there are
a number of additional Tutte polynomial parameters whose behavior are also captured by Tutte
posets besides the ones mentioned here, as well as some Tutte polynomial parameters for which
maximality in the Tutte poset implies minimality for the parameter; we refer the reader to [18] for
more details.

Given the previously noted facts, we make the following definition.

Definition 1.2. A graph H ∈ Gn,m is Tutte-maximum if G 4 H for all G ∈ Gn,m.

The purpose of this paper is to demonstrate that there exist infinite families of graph classes which
contain Tutte-maximum graphs. The classes in which we are able to demonstrate these maximum
graphs are, in fact, the same edge-sparse classes in which Boesch, Li, and Suffel first demonstrated
the existence of UOR graphs, the classes Gn,n, Gn,n+1 and Gn,n+2.

The structure of the paper is as follows. In the next section we present preliminary facts on
the Tutte polynomial which are necessary for our results. In the next few sections we determine
the Tutte-maximum graphs for Gn,n, Gn,n+1, and Gn,n+2 in turn, noting the increasing difficulty of
the task. As mentioned, these Tutte-maximum results generalize and extend the results of Boesch,
Li, and Suffel [5] by showing that the graphs identified there are in fact the unique maximum
graphs for far more Tutte polynomial parameters than just all-terminal reliability. To conclude we
conjecture, based partly on other work on UOR graphs, that the Gn,n+3 graph class has a Tutte-
maximum graph, and describe the form of these conjectured maximum graphs. We note that the
graph classes Gn,n+4 and Gn,n+5 do not have unique maximum graphs, at least not for all n, and
describe the counterexamples found there. We also conjecture the form of Tutte-maximum graphs
in a few other graph classes based on previous results on spanning trees.

For any terms and notations left undefined in the paper we refer the reader to a standard
reference like [7]. In general our notation will be standard as well, although we note the following
non-standard notations which we may employ. If there is no confusion, we omit brackets around
vertex or edge sets, writing for example G−v (resp. G−uv) instead of G−{v} (resp. G−{uv}) to

3



Figure 1: The two maximal graphs of the (7, 11) Tutte polynomial poset. The left graph maximizes
all-terminal reliability, and the right graph maximizes acyclic orientations, in the G7,11 graph class.
Both parameters may be obtained from the Tutte polynomial.

indicate the graph G with the vertex v (resp. edge uv) removed. In addition the following notation
will be used extensively. The Tutte polynomial is block-invariant, in other words, if graphs G and
H have the same block structure then T (G;x, y) = T (H;x, y). When considering graphs that have
multiple blocks, then, we introduce the notation G = B1 ·B2 to indicate any graph whose blocks are
B1 and B2, or more precisely, any member of the Tutte poset equivalence class whose graphs consist
of blocks B1 and B2. (The ‘dot’ is intended to suggest both the common vertex of B1 and B2 and
the multiplication operation since Tutte polynomials multiply over blocks.) Furthermore, when
multiples of the same block appear we may abbreviate in the natural way; for example 2C4 · 3K5

stands for any graph whose five blocks consist of two 4-cycles and three complete graphs on 5
vertices.

2 Preliminaries

We begin with some necessary facts about the Tutte polynomial. The Tutte polynomial T (G;x, y)
of a graph G may be defined recursively using edge deletions and contractions as

T (G;x, y) =


T (G− e;x, y) + T (G/e;x, y) if e is not a bridge or loop
xT (G/e;x, y) if e is a bridge
yT (G− e;x, y) if e is a loop

(2)

with the Tutte polynomial of a graph with no edges equal to 1. As mentioned in the Introduction,
the Tutte polynomial factors over blocks, i.e., when G = G1 ·G2 · . . . ·Gt, then

T (G;x, y) = T (G1;x, y)T (G2;x, y) . . . T (Gt;x, y) (3)

regardless of how the blocks ofG are arranged. Thus the Tutte polynomial of every tree on n vertices
is identically xn−1, since any tree on n vertices has n−1 bridges as its constituent blocks. (In terms
of Tutte posets, this shows that the (n, n−1) Tutte polynomial poset is rather uninteresting, being
the trivial poset with a single equivalence class, that equivalence class containing every tree on n
vertices.)

Using the deletion-contraction definition (2) and factoring over blocks, it is easy to determine
the Tutte polynomial of some basic graphs that will be useful later. We mention two well-known
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graphs and their Tutte polynomials in particular. Let Cn denote the cycle on n vertices, n ≥ 2,
with the cycle C2 being the multigraph consisting of two edges between two vertices. We then have

T (Cn;x, y) = y + x+ · · ·+ xn−1. (4)

where when n = 1 we take C1 to be a loop and T (C1;x, y) = y as in (2). With Mm denoting a
multiedge block, a graph consisting of two vertices with m ≥ 2 edges between them, we have

T (Mm;x, y) = x+ y + · · ·+ ym−1. (5)

where when m = 1 we take M1 to be a bridge and T (M1;x, y) = x as in (2). All of the previous
basic facts can be found, for example, in the surveys [10, 14, 24, 28]. We also have the following
useful generalization of (2) above, found in [17]. A k-ear Ek of a graph G is an induced path of k
edges between two distinct vertices u, v ∈ V (G). A 1-ear is then just an edge between two vertices,
while for k ≥ 2 a k-ear may be viewed as a subdivided edge between two vertices. There is therefore
a natural notion of deleting and/or contracting a k-ear Ek , which we denote by G−Ek and G/Ek

respectively: by G−Ek we mean deleting from G all k edges of Ek along with the internal vertices
of the path Ek, and by G/Ek we mean deleting the ear Ek and then identifying the two endvertices
of Ek.

Theorem 2.1 ([17]). Let G be a graph with k-ear Ek, k ≥ 1, with all edges of Ek non-bridges.
Then

T (G;x, y) = (1 + x+ x2 + · · ·+ xk−1)T (G− Ek;x, y) + T (G/Ek;x, y).

As mentioned in the Introduction, the (n,m) Tutte polynomial poset is defined on Gn,m by the
relation G 4 H if and only if

T (H;x, y)− T (G;x, y) = (x+ y − xy)P (x, y) (6)

for some polynomial P (x, y) with non-negative coefficients. If P (x, y) = 0 then T (G;x, y) =
T (H;x, y) and G and H are Tutte polynomial equivalent or T -equivalent graphs. The (n,m) Tutte
polynomial poset thus is more precisely a poset on the equivalence classes of the graphs of Gn,m
with G,H equivalent if and only if T -equivalent, but there will be no problem if we allow any
representative of an equivalence class to represent the class as a whole. If P (x, y) 6= 0 then we
indicate this by G ≺ H.

Finally, the following technical lemma will be useful. The proof, which is an algebraic exercise,
is omitted.

Lemma 2.2. Let a, b be positive integers. Then

x+ y

(
a+b−3∑
i=0

yi

)
− ya−1

(
x+ y

(
b−2∑
i=0

yi

))
= (x+ y − xy)

a−2∑
i=0

yi

where it is understood that
−1∑
i=0

yi = 0.
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Figure 2: An illustration of the graphs G (left) and H (right) from Theorem 3.1. Additional blocks,
if present, are identical in the two graphs and are not shown.

3 Tutte polynomial posets for Gn,n
Graphs in the class Gn,n are all unicyclic graphs, graphs of the form Ck · (n− k)K2 for 3 ≤ k ≤ n.
As such, the Tutte polynomial poset of Gn,n could be resolved using (2), (3), and (4) from the
previous section, along with the necessary algebra. Instead however we prove a more general result
in Theorem 3.1 below, which effectively says that moving an edge in order to combine blocks will
produce a “better” graph in the Tutte poset. Theorem 3.1 will resolve Gn,n but will also be useful
in resolving larger classes.

Theorem 3.1. Let G1, G2 be two blocks of the graph G, with v the common cutvertex of G1, G2,
and let uv ∈ E(G1) and wv ∈ E(G2). Define H = G − uv + uw. Then we have G 4 H and, if
G1 6= K2, we have G ≺ H.

An illustration of G and H appears in Figure 2. Our proof approach is similar to the proof of
one of the main theorems (Theorem 3.1) in [18], although here the simple graphical structure and
minimal change from G to H make the process much more straightforward.

Proof. Since the Tutte polynomial factors over blocks and is itself a polynomial with non-negative
coefficients, we may assume that G consists solely of the two blocks G1, G2 and that H is the single
block G−uv+uw. Furthermore, if G1 = K2 then the block structure of G and H are identical. In
this case T (G;x, y)− T (H;x, y) = 0 and trivially we have G 4 H. Hence for the rest of the proof
we assume that G1 6= K2.

The graphs G and H differ only in one edge and so, abusing notation somewhat, we will often use
the same labels to identify corresponding edges of the graphs, as this helps identify corresponding
terms in the decomposition (2). To begin, the subgraphs G− v and H − v − uw are identical and
we let S denote the edges of both subgraphs. We now decompose T (G;x, y) and T (H;x, y) by
“deleting/contracting every edge of S”. Formally, let {e1, . . . , e`} be a fixed but arbitrary ordering
of the edges of S, and let R = (r1, . . . , r`) be a binary vector in {0, 1}`. Form the multigraphs
GR and HR by sequentially deleting when ri = 0, or contracting when ri = 1, each edge ei in
turn. Repeated application of the deletion-contraction formula (2) to T (G;x, y) and T (H;x, y)
then produces

T (H;x, y)− T (G;x, y) =
∑
R∈R

(T (HR;x, y)− T (GR;x, y)) (7)

where R ⊆ {0, 1}` denotes the permissible sequences of deletions and contractions on S. (Bridges
and loops may be formed by certain sequences of deletions and contractions, which means not all
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possible binary vectors may appear.) By the above it suffices to show that GR 4 HR for every
R ∈ R.

Let R ∈ R be fixed, then, and consider GR and HR. Since every edge of S has been either
deleted or contracted, the graph GR is a multistar, that is, the blocks Mm1 , . . . ,Mmk

of GR are
each multiedge blocks as in (5), with m1, . . . ,mk denoting the edge multiplicities, and the cutvertex
v is the common vertex of the multiedge blocks. Note that, since G consists of two blocks, then GR

contains at least two multiedge blocks and k ≥ 2. As in G and H themselves, the corresponding
graph HR differs from GR only in one edge. In GR we may assume that the edge is part of the
first block Mm1 , while in HR the edge connects the non-v vertices of block Mm1 and Mm2 . Again
abusing notation somewhat, we let e denote that edge in both GR and HR. Since GR−e = HR−e,
by (2) we thus have

T (HR;x, y)− T (GR;x, y) = T (HR/e;x, y)− T (GR/e;x, y)

Thus it suffices to show that GR/e 4 HR/e. Since in GR we have e ∈ E(Mm1), then GR/e =
(m1 − 1)C1 ·Mm2 · . . . ·Mmk

with C1 denoting a loop. In HR edge e instead connects the non-v
vertex of the first multiedge block to the non-v vertex of Mm2 , and thus the graph HR/e combines
these blocks into the single multiedge block Mm1+m2−1. Therefore, using (3) we have

T (HR/e;x, y)− T (GR/e;x, y)

= T (Mm1+m2−1 ·M3 · . . . ·Mmk
;x, y)− T ((m1 − 1)C1 ·Mm2 ·Mm3 · . . . ·Mmk

;x, y)

= (T (Mm1+m2−1;x, y)− T ((m1 − 1)C1 ·Mm2 ;x, y))

k∏
i=3

T (Mmi ;x, y)

When m1 = 1 then the above expression reduces to zero (in fact GR/e and HR/e are block-
isomorphic) and we have trivially GR/e 4 HR/e. Otherwise, using (5), and then Lemma 2.2 with
a = m1 and b = m2, the expression reduces to

=
((
x+ y + · · ·+ ym1+m2−2)− ym1−1 (x+ y + · · ·+ ym2−1)) k∏

i=3

T (Mmi ;x, y)

= (x+ y − xy)
(
1 + y + · · ·+ ym1−2) k∏

i=3

T (Mmi ;x, y)

where it is understood that if m1 = 1 then the second parenthetical expression in the final line
is equal to 0. Clearly (1 + y + · · · + ym2−2)

∏k
i=3 T (Mmi ;x, y) is a polynomial with non-negative

coefficients, and we have GR/e 4 HR/e, which suffices to show that G 4 H as desired. The proof
is completed by noting that, when G1 6= K2, then G1 is necessarily 2-connected, which implies
that a cycle including u, v exists. At least one of the R ∈ R contracts every edge of this cycle
that is not incident to v, and this results in m1 ≥ 2 in GR for that R. Thus TH(x, y)− TG(x, y) =
(x+ y − xy)P (x, y) where P (x, y) is non-zero, giving G ≺ H.

As an immediate consequence we have the Tutte polynomial poset structure for the unicyclic
graph class Gn,n, by repeatedly incorporating bridges successively into the cycle, i.e., by applying
Theorem 3.1 with G1 equal to the cycle and G2 equal to a bridge incident to the cycle.
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Theorem 3.2. The Tutte polynomial poset for Gn,n is the chain

C3 · (n− 3)K2 ≺ C4 · (n− 4)K2 ≺ . . . ≺ Cn−1 ·K2 ≺ Cn.

In particular, the unique Tutte-maximum graph of the poset is the cycle Cn, and the minimum
graphs of the poset have blocks consisting of a single triangle C3 and (n− 3) bridges.

Before we move on we note one particular instance of the Theorem 3.1 which will be useful in
the other edge-sparse graph classes as well, which essentially says that contracting a bridge and
“replacing” it by subdividing an edge in a 2-connected block (thus keeping the same number of
vertices and edges in the whole graph) will result in a better graph in the Tutte poset.

Corollary 3.3. Let G be a 2-connected graph. Then G · K2 ≺ G′, where G′ is G with any edge
subdivided.

Proof. Let uv be any edge of G. Since the Tutte polynomial is block-invariant, we may assume
that the bridge is incident with v, and call its non-v vertex w. Applying Theorem 3.1 with G1 = G
and G2 = K2 now gives the result.

4 Tutte polynomial posets for Gn,n+1

An important family of graphs for this section and the next one are the generalized theta graphs. A
generalized theta graph θ(a1, . . . , ak) is the graph consisting of two vertices connected by k vertex-
independent paths, each ai denoting the length in edges of the ith path. A generalized theta graph
with k = 3 is often called a theta graph θ(a, b, c). (Theta graphs look something like the letter θ).

Theta graphs are the only 2-connected graphs in Gn,n+1 [4]. This fact effectively makes them
the only candidates for maximal graphs in the class, which we note in the next theorem.

Lemma 4.1. For every G ∈ Gn,n+1 there is a theta graph H such that G 4 H.

Proof. Let H be a maximal graph in the Tutte poset. By Corollary 3.3 no bridges are present in
H. Thus, given H has n + 1 edges, H must consist of either a theta graph or two cycles sharing
a cutvertex. However if two cycles appear as blocks in H, say Ca · Cb, then applying Theorem 3.1
with say, G1 = Ca and G2 = Cb we obtain the theta graph θ(a, 1, b−1) which is larger in the poset,
contradicting maximality.

With regard to maximum graphs in this class then it is only a question of which theta graph
is maximum, or if there might exist multiple maximal theta graphs. Note that generalized theta
graphs may be thought of as consisting of parallel ears, that is, ears that share common endvertices.
The next theorem then, which shows that making parallel ears “more equal” in length will produce
a better graph in the Tutte poset, will help settle that issue.

Theorem 4.2. Let G be a graph containing two parallel ears Ea, Eb with common endvertices x, y,
with a− 1 > b. Let H be the same graph but with the parallel ears Ea, Eb replaced with parallel ears
Ea−1, Eb+1. Then G ≺ H.

Proof. Let e ∈ E(G) be any edge of the ear Ea and let f ∈ E(H) be any edge of the ear Eb+1.
Applying (2) to these edges, and noting that G/e = H/f , we obtain

T (H;x, y)− T (G;x, y) = T (H − f ;x, y)− T (G− e;x, y)

= T ((H − Eb+1) · bK2;x, y)− T ((G− Ea) · (a− 1)K2;x, y).
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We now show (G − Ea) · (a − 1)K2 ≺ (H − Eb+1) · bK2. Note that in the graph G − Ea the
ear Eb is still present, and in H − Eb+1 the ear Ea−1 is still present, and that (G − Ea) − Eb =
(H − Ea−1) − Eb+1. To emphasize this, we rewrite G − Ea = G′ : Eb and H − Eb+1 = G′ : Ea−1
where G′ = (G − Ea) − Eb = (H − Ea−1) − Eb+1 and G′ : E indicates the graph G′ with ear E
connecting vertices x, y. (The ‘colon’ is intended to suggest the vertices x, y of G′.)

Now since a− 1 > b, the ear Eb in G′ : Eb is shorter than the ear Ea−1 in G′ : Ea−1, and there
are more bridges in G′ : Eb ∪ (a − 1)K2 than there are in G′ : Ea−1 ∪ bK2. Thus by repeatedly
applying the operation of Corollary 3.3 to the graph G′ : Eb ∪ (a − 1)K2 we obtain the chain of
inequalities

(G′ : Eb) · (a− 1)K2 ≺ (G′ : Eb+1) · (a− 2)K2 ≺ · · · ≺ (G′ : Ea−1) · bK2

where G′ : Eb+1 indicates that the ear Eb in G′ : Eb has been lengthened by one edge. But
(G′ : Ea−1) · bK2 = (H − Eb+1) · bK2, and thus (G − Ea) · (a − 1)K2 ≺ (H − Eb+1) · bK2 as
required.

The last theorem, together with Lemma 4.1, immediately implies the existence of maximum
theta graphs, and hence maximum graphs, in this class.

Theorem 4.3. The unique Tutte-maximum graph in the (n, n + 1) Tutte polynomial poset is the
theta graph with path lengths as equal as possible.

We make note here of a variation on Theorem 4.2 that will be useful in the next section. Letting
x = y in that theorem we have the following, which says essentially that making the lengths of two
cycle blocks “more equal” produces a better graph. (This is also apparent via Theorem 4 and some
tedious algebra, but is immediate via Theorem 4.2.)

Theorem 4.4. Let Ca · Cb be such that a− 1 > b. Then Ca · Cb ≺ Ca−1 · Cb+1.

Finally, we note the increasing complexity of the Tutte polynomial posets in Gn,n+1 as compared
to Gn,n. Unlike in the previous (n, n) class the (n, n+ 1) Tutte polynomial posets are typically not
chains. The smallest non-chain poset (obtained using Mathematica) is the (6, 7) Tutte polynomial
poset which appears in Figure 3. In that poset the graph θ(2, 2, 2) ·K2 is incomparable with both
the graphs θ(1, 2, 4) and C3 ·C4. Based on our computations, the Tutte posets in this Gn,n+1 class
appear to rapidly increase in complexity as n increases.

5 Tutte polynomial posets for Gn,n+2

As in the previous class, it is important to first identify which 2-connected graphs are possible in
this class. These were previously determined in [5], where it was shown there are three general
families of 2-connected graphs here: the generalized theta graphs with four ears θ(a, b, c, d), the
delta graphs ∆(a, b, c, d, e) and the box graphs B(a, b, c, d, e, f). Generalized theta graphs have been
defined in the previous section. The form of the delta graph and box graph families are pictured in
Figure 4. The formal definitions of the these families are as follows. We say that a graph is a delta
graph ∆(a, b, c, d, e) if it has three vertices, say x, y, z, with one ear of length e between the pair
of vertices (x, y), and two parallel ears of lengths a, b (resp. c, d) in between the vertex pair (x, z)
(resp. (y, z)). We say a graph is a box graph B(a, b, c, d, e, f) if it has four vertices, say u, v, x, y,
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Figure 3: The smallest non-chain Tutte polynomial poset, the (6, 7) Tutte polynomial poset. (If
multiple graphs have the same Tutte polynomial only one graph is shown.) The graph θ(2, 2, 2) ·K2

is incomparable with both the graphs θ(1, 2, 4) and C3 · C4. As one moves upward in the poset, a
wide variety of graph parameters associated with the Tutte polynomial increase.
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Figure 4: Delta graphs ∆(a, b, c, d, e) and box graphs B(a, b, c, d, e, f). Each labeled line indicates
a path with length in edges equal to the label.

with single ears of lengths a, b, c, d, e, f between vertex pairs (u, v), (x, y), (u, x), (v, y), (v, x), and
(u, y) respectively.

We now show that the box graphs play a similar role in Gn,n+2 as the theta graphs did in Gn,n+1

in that, if G ∈ Gn,n+2 is any other type of graph then there will be a box graph H such that G ≺ H.
From Theorem 3.1 we know that any maximal graphs in the Tutte poset must be 2-connected, so
to prove that box graphs are the maximal graphs here it suffices to show that for each generalized
theta graph θ(a, b, c, d) and each delta graph ∆(a, b, c, d, e) there is a box graph B(a, b, c, d, e, f)
that is larger in the poset. That is accomplished in the next two theorems.

Theorem 5.1. Let G be a generalized theta graph θ(a, b, c, d) with a = min{a, b, c, d}. Let H be
the box graph B(1, 1, b− 1, c− 1, a, d). Then G ≺ H.

Proof. We note that, since G is assumed to be simple and a is the minimum path length in G then
b, c ≥ 2 and H is well-defined. Now, letting Ea denote the ear of length a in both G and H, by
construction we have G − Ea = H − Ea = θ(b, c, d). Therefore, applying Theorem 2.1 to the ear
Ea in both G and H, we obtain

T (H;x, y)− T (G;x, y) = T (H/Ea;x, y)− T (G/Ea;x, y)

= T (∆(b− 1, 1, 1, c− 1, d);x, y)− T (Cb · Cc · Cd;x, y)

Hence it suffices to show that Cb · Cc · Cd ≺ ∆(b− 1, 1, 1, c− 1, d). Now in Cb · Cc · Cd let e be an
edge of Cd and f be an edge of Cb. Applying Theorem 3.1 with G1 = Cd, G2 = Cb, with uv = e,
vw = f we obtain

Cb · Cc · Cd ≺ θ(b− 1, 1, d) · Cc.

Now in θ(b− 1, 1, d) · Cc let e be an edge of the ear Ed in θ(b− 1, 1, d) and f an edge of Cc. Now
applying Theorem 3.1 again with G1 = θ(b− 1, 1, d), G2 = Cc, with uv = e and vw = f we obtain

θ(b− 1, 1, d) · Cc ≺ ∆(b− 1, 1, 1, c− 1, d).

Thus Cb · Cc · Cd ≺ ∆(b− 1, 1, 1, c− 1, d), and so G ≺ H as desired.

Theorem 5.2. Let G be the delta graph ∆(a, b, c, d, e) with d = max{a, b, c, d}. Let H be the box
graph B(1, e, a, c, b, d− 1). Then G ≺ H.

11



Proof. Note that since G is assumed to be simple then d ≥ 2 and H is well-defined. Now, letting Ea

denote the ear of length a in both G and H, by construction we have G−Ea = H−Ea = θ(b+e, c, d).
Hence, applying Theorem 2.1 to the ear Ea in both G and H, we obtain

T (H;x, y)− T (G;x, y) = T (H/Ea;x, y)− T (G/Ea;x, y)

= T (∆(b, 1, e, d− 1, c);x, y)− T (Cb · θ(c, d, e);x, y)

Now let Ec denote the ear of length c in both θ(c, d, e) and ∆(b, 1, e, d − 1, c). Applying Theorem
2.1 now to the ear Ec in both θ(c, d, e) and ∆(b, 1, e, d−1, c) the last expression above then becomes

((1 + x+ x2 + · · ·+ xc−1)T (∆(b, 1, e, d− 1, c)− Ec;x, y) + T (∆(b, 1, e, d− 1, c)/Ec;x, y))

−
(
(1 + x+ x2 + · · ·+ xc−1)T (Cb · θ(c, d, e)− Ec;x, y) + T (Cb · θ(c, d, e)/Ec;x, y)

)
= (1 + x+ x2 + · · ·+ xc−1)T (Cb+1 · Cd+e−1;x, y) + T (θ(b, 1, e, d− 1);x, y)

− (1 + x+ x2 + · · ·+ xc−1)T (Cb · Cd+e;x, y)− T (Cb · Cd · Ce;x, y)

Hence it suffices to show that Cb ·Cd+e ≺ Cb+1 ·Cd+e−1 and Cb ·Cd ·Ce ≺ θ(b, 1, e, d− 1). However,
Cb · Cd+e ≺ Cb+1 · Cd+e−1 follows directly from Theorem 4.4, so to complete the proof it only
remains to show that Cb · Cd · Ce ≺ θ(b, 1, e, d− 1).

To see that Cb · Cd · Ce ≺ θ(b, 1, e, d − 1), we apply Theorem 3.1 twice. First, let G1 = Cb,
G2 = Cd with uv any edge of Cb and vw any edge of Cd. By Theorem 3.1 we have Cb · Cd · Ce ≺
θ(b, 1, d − 1) · Ce. Now take G1 = Ce, G2 = θ(b, 1, d − 1), and uv to be any edge of Ce and vw
to be the edge of θ(b, 1, d − 1) that comprises the path of length 1. By Theorem 3.1 we arrive at
θ(b, 1, d− 1) · Ce ≺ θ(b, 1, e, d− 1). Therefore Cb · Cd · Ce ≺ θ(b, 1, e, d− 1) as required.

With regard to maximum graphs in this class then it is only a question of which box graph
is maximum, or if there might exist multiple maximal box graphs. The following theorem, then,
which describes how adjacent ears may be “evened out” in length, will help settle the maximum
question.

Theorem 5.3. Let G = B(a, b, c, d, e, f) be a box graph such that b + f − 1 > a + e. Let H =
B(a+ 1, b, c, d, e, f − 1). Then G ≺ H.

Proof. Note that if b + f − 1 > a + e then we may assume that f > 1 and thus H is well-
defined. Now, letting Ec denote the ear of length c in both G and H, by construction we have
G− Ec = H − Ec = θ(d, b+ e, a+ f). Hence, applying Theorem 2.1 to the ears Ec we have

T (H;x, y)− T (G;x, y) = T (H/Ec;x, y)− T (G/Ec;x, y)

= T (∆(a+ 1, e, b, f − 1, d);x, y)− T (∆(a, e, b, f, d);x, y)

Hence it suffices to show that ∆(a, e, b, f, d) ≺ ∆(a + 1, e, b, f − 1, d). Now, letting Ed denote the
ear of length d in both of these graphs, applying Theorem 2.1 the above is equal to

(1 + x+ · · ·+ xd−1)T (∆(a+ 1, e, b, f − 1, d)− Ed;x, y) + T (∆(a+ 1, e, b, f − 1, d)/Ed;x, y)

− (1 + x+ · · ·+ xd−1)T (∆(a, e, b, f, d)− Ed;x, y)− T (∆(a, e, b, f, d)/Ed;x, y)

= (1 + x+ · · ·+ xd−1)T (Ca+e+1 · Cb+f−1;x, y) + T (θ(a+ 1, e, b, f − 1);x, y)

− (1 + x+ · · ·+ xd−1)T (Ca+e · Cb+f ;x, y)− T (θ(a, e, b, f);x, y)
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Hence it suffices to show that Ca+e ·Cb+f ≺ Ca+e+1 ·Cb+f−1 and θ(a, b, e, f) ≺ θ(a+ 1, b, e, f − 1).
But since b+f −1 > a+e both these statements follow from previous results, the first by Theorem
4.4 and the second from Theorem 4.2, completing the proof.

We can now identify the unique maximum graph in the graph class Gn,n+2.

Theorem 5.4. The unique Tutte-maximum graph in the (n, n + 2) Tutte polynomial poset is the
box graph B(a, b, c, d, e, f) with ear lengths as evenly distributed as possible and, furthermore, with
as many of the pairs (Ea, Eb), (Ec, Ed), (Ee, Ef ), equal in length as possible.

To clarify the statement on pairs of ears, another way to say this is that the maximum graphs
for graph classes G4,6, G5,7, G6,8, etc., are B(1, 1, 1, 1, 1, 1), B(2, 1, 1, 1, 1, 1), B(2, 2, 1, 1, 1, 1), . . . ,
B(2, 2, 2, 2, 2, 2), B(3, 2, 2, 2, 2, 2), B(3, 3, 2, 2, 2, 2), and so on. In the proof below we will call these
graphs B∗n.

Proof. Assume to the contrary that there is a graph G ∈ Gn,n+2 such that B∗n 4 G, and take G to
be such a graph that is maximal in the poset. By the previous results of this section we may assume
that G is a box graph B(a, b, c, d, e, f). Now examine two independent ears of G, that is, ears that
have no common vertices, such as Ee, Ef . In independent ears Ee, Ef , if f − 1 > e, then by taking
Eb to be the longer ear of Ea, Eb in the cycle formed by Ea, Eb, Ec, Ef we have b+ f − 1 > a+ e,
which by Theorem 5.3 means that G is not maximal, a contradiction. Hence every two independent
ears of G must differ in lengths by at most one.

Next examine two adjacent ears in G, that is, ears that share one common endvertex, such as
Ea, Ef . Assume in adjacent ears Ea, Ef we have f − 1 > a. Note that we may assume e ≤ f , else
we may choose the pair Ea, Ee instead, and similarly assume a ≤ b, else we may choose the pair
Eb, Ef instead. Hence again we have b + f − 1 > a + e, which leads as before to a contradiction.
Since there are no parallel ears in G, we see in fact that every pair of ears of G must differ in
lengths by at most one, and thus the ear lengths are as equal as possible.

Finally, consider the case where the ear lengths of G are as equal as possible, but fewer than
possible of the pairs (Ea, Eb), (Ec, Ed), (Ee, Ef ), are equal in length. Then there exists two pairs, say
(Ea, Eb) and (Ee, Ef ), that are unequal in length, which implies there exists the cycle Ea, Eb, Ee, Ef ,
such that a = e = t and b = f = t+ 1 for some t ≥ 1. But this implies b+ f − 1 > a+ e, again a
contradiction. Thus as many of the pairs of ears must be equal as possible, and in fact G = B∗n.

6 Conclusion

The cycles Cn in Gn,n, the theta graphs with path lengths as even distributed as possible in Gn,n+1,
and the box graphs of Theorem 5.4 are the UOR graphs for their classes as identified in [5]. Thus
Theorems 3.2, 4.3, and 5.4 generalize [5] by showing that those graphs are maximum graphs in their
respective classes not just for all-terminal reliability, but for a wide variety of graph parameters
associated with the Tutte polynomial, including the number of spanning trees, spanning forests, and
spanning connected subgraphs; the number of various types of orientations of G, including acyclic
orientations, totally cyclic orientation, and acyclic orientations with a single source; and various
types of partial orientations and fourientations of G. In addition, the cycles, theta graphs and box
graphs described have the maximum coefficients (in absolute value) in their classes for the chromatic
polynomial and flow polynomial; generating functions for spanning forests of i components, and
spanning subgraphs of i edges; generating functions relating to orientations, partial orientations,
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and fourientations of a graph; and the generating function for the number of critical configurations
of level i of the Abelian sandpile model [22].

While the graph classes studied here all have unique Tutte-maximum graphs, our computation
of small Tutte posets shows that this is not always the case. The smallest such class, which is
also the smallest class with no UOR graph [23], is (6, 11), which has two maximal graphs in its
Tutte poset. (The two graphs have 2P3 and P4 ∪ P2 as their complements, respectively.) Thus
the (n, n + 5) Tutte polynomial posets do not always have maximum graphs, at least not for all
n. This is also the case for the (n, n + 4) Tutte polynomial posets, as illustrated by the (7, 11)
Tutte polynomial poset described in the Introduction. However, in the class Gn,n+3 we conjecture
that there is a unique maximum graph. Just as the unique maximum for Gn,n+2 was a particular
“equally distributed” subdivision of K4, a particular “equally distributed” subdivision of K3,3 was
shown to be maximum for all-terminal reliability by Wang [27]. We conjecture that these graphs
given in [27] are more generally maximum graphs in the (n, n+ 3) Tutte polynomial poset. If true
then—like the maximum graphs found here—these graphs are in fact maximum in their class for
far more parameters than just all-terminal reliability. We believe some of the tools in this paper
may prove useful in determining whether our conjecture is correct or not.

Finally, as far as larger, more edge-dense graph classes, other Tutte polynomial parameters
may be of some guide here. Much work, for example, has been done on determining which graphs
are t-optimal, in other words, maximize the number of spanning trees. We mention one fact in
particular. In [11] it was shown that regular complete multipartite graphs maximize the number
of spanning trees in the classes Gn,m where they exist. We conjecture that, in these graph classes,
the regular complete multipartite graphs are in fact Tutte-maximum.
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