





augmentation of G. When our base graph is equal to the empty graph on
n vertices this problem is in fact the network synthesis problem.

The purpose of this paper is to demonstrate that, for the general network
augmentation problem, the intuition mentioned previously is false: there do
exist simple graphs for which the t-optimal augmentation is a multigraph,
even when other simple augmentations are available. This is demonstrated
for the smallest augmentation case k = 1 in Section Two. In Section Three,
one of the multigraph t-optimal augmentations from Section T'wo is shown
to be uniformly more reliable than any simple augmentation as well. In
Section Four we extend the results of Sections Two and Three to the 2-
edge augmentation case. Finally in Section Five we demonstrate that for
any choice of k > 0 there exist an infinite number of simple graphs G for
which G + ke, that is, G with k copies of one edge e added, has more trees
than any simple k-edge augmentation of G. This demonstrates that any
k-edge uniformly most reliable augmentation of such a G, if it exists, must
be a multigraph as well.

Our notation and terminology follows that in [2]. We emphasize that G|e
denotes the graph obtained from G by contracting the edge e € G, or
equivalently the graph obtained by identifying the end-vertices of ¢ € G.
We also introduce two additional notations. Let I'(n,m) denote the class
of all graphs and multigraphs which have n nodes and m edges. Finally,
let tg(e) denote the number of trees of G which contain the edge e € G.

2 Single-Edge Augmentations

The base graphs we will be augmenting all belong to a particular family of
graphs or are slight modifications of that family, which we describe here. A
star graph is a bipartite graph in which one of the parts is a single vertex,
i.e. astar graph is Ky , for some s. Our base graphs will have complements
consisting of two stars (and possibly some isolated vertices). Note that this
implies that our base graphs and their simple edge augmentations will be
members of the same family. An example of one of our base graphs is
shown below. The graph pictured will turn out to be the smallest base
graph known for which the best augmentation results in a multigraph.

Formulas for t(G) for members of our family of graphs are available from a
number of sources. One such statement is below.

Lemma 2.1 [1] Let G consist of two stars with s and t leaves respectively,

and possibly some isolated vertices. Then t(G) = n"2~*"t(n—1)*+~2(n—
1-5)(n—1-t).
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It is verifiable (via Sturm sequences, for example), that the expression above
is positive for all p € (0,1), and so Rel(G.) > Rel(G) for all p € (0,1). O

Thus multigraph augmentations may be, not only t-optimal when compared
to simple augmentations, but uniformly more reliable as well. It may very
well be that a large number of the family of graphs under discussion are
uniformly more reliable than the simple augmentation alternatives, but we
know of no analytic method that would demonstrate that fact.

4 Two-Edge Augmentations

Our base graphs are slight alterations of the family of graphs previously
discussed. For this new family we take the graphs from Section Two and

omit the edge e which connects the stars. An example which corresponds
to the previous figure is shown below.

Figure 2: The best 2-edge addition is to introduce a double edge connecting
the far left and far right vertices.

The analysis follows closely the lines of the previous section, and conse-
quently where appropriate we omit some of the proofs.

Theorem 4.1 [9] Let G consist of two stars with s and t leaves respectively,
as well as the edge connecting the central nodes of the two stars, and possibly
some isolated vertices. Then t(G) =n"~2"*"t(n—1)***"}(n—1-s)(n—
1-t)—n"3""t(n-1)"*1(2n-2-s—1).

Corollary 4.2 Let s +t = k be fized, and let G be of the form described
above. Then t(G) is mazimized when |s — t| is made as small as possible,
i.e. when the stars are as equal in size as possible. In particular, when k is
of even parity we require s =t and when k is odd we require s =t — 1.

We again consider the n even and n odd case in turn. From the discussions
of the previous section it is easy to see that the following holds.
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