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Supplemental Results Appendix – NOT FOR PUBLICATION 

Section I The Estimated Effect of Mortality Using All Data 

 Matching has the advantage of controlling for the factors that led to the adoption of 

regulation and allows us to obtain unbiased estimates of the PER’s effect. The disadvantage is 

that the resulting sample is small, and thus some tests may not be very powerful. The resulting 

matching estimates are larger than the estimates obtained on the entire sample; one standard error 

bands of the matching estimate exclude the OLS estimate. They are not statistically significantly 

different at conventional significance levels, however. This appendix reports the results obtained 

on the entire sample. 

The entries in Table A1 are the estimated impact (with standard error in parentheses) of 

PER on the outcome of interest. Each row applies to a separate specification. 

Row [1] reports the coefficients obtained on the entire sample of 3,125 counties using 

main specification discussed in the text: a regression that controls for county gender, age, and 

race composition; log wages; physicians; poverty rate; unemployment rate; education level; 

Medicaid enrollment; state health and hospital expenditures; county and year fixed effects; and 

quadratic state specific time trends. 

Rows [2] – [5] specifications test the sensitivity of the results to the choice of sample 

period. The results are robust to either the exclusion of the earliest 4 years of sample or to the 

latest 4 years of sample. They are also robust to the exclusion of the early 2 years and late 2 

years of our main sample. When the sample is further restricted to 1997-2002, the estimated 

effects of PER on disease mortality rise, but these estimates are not statistically different from 

the estimates obtained using the full sample. We think the results for 1997-2002 are influenced 

by the brevity of the sample period, which does not allow us to estimate the state specific trends 

with precision. Indeed, the results obtained on 1997-2002 sample are in fact almost identical with 

the estimates obtained from a specification that does not control for state specific trends.1 It is 

important to fully control for mortality trends because these could be important source of 

confound for PER. Mortality trends differ by geographical area due to differences in main cause 

                                                            
1 The estimates obtained on the 1997-2002 sample when we do not control for state specific trends are: 0.088 
(0.030) significant at 1% significance level for total mortality; 0.098 (0.030) significant at 1% significance level for 
disease mortality. The estimates obtained on the entire 1994-2006 sample when we do not control for state specific 
trends are: 0.100 (0.041) significant at 5% significance level for total mortality; 0.099 (0.041) significant at 1% 
significance level for disease mortality. 
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of death and differential advances in medical knowledge about various diseases generating 

differential changes in trends. 

To assess whether reverse causality is an issue, we test whether the identified trend in 

utilization rates happened before the PER’s adoption and thus cannot be attributed to this 

regulation. For this purpose, we add to the main specification a variable defined as 1 if the PER 

was effective in the following year. Coefficients for the one-year lead PER variable are not 

statistically significant, as shown in row [6] of Table A1. We also find that the two-year lead of 

PER is not significantly correlated with the current level of utilization rates. Overall, these results 

suggest that the observed trend did not begin in the years prior to PER adoption, and thus 

causality runs from PER to mortality rates and not the other way around. 

 There may be concerns that some counties might be able to create pressure to obtain 

desired regulation. If so, then it seems most likely that the county of the state capital is most 

likely to have a more significant weight in the decisions of the policy makers. The results in row 

[8] reveal, however, that our results are robust to the exclusion of the counties of the state 

capitals. 

Row [9] restricts the sample to only those states that adopted PER during our sample. Not 

surprisingly, because this restriction eliminates the control states, it also eliminates much of the 

information available to estimate the effects of PER. We obtain similar results; the coefficients, 

however, are not statistically significant, consistent with a model specification that cannot fully 

account for the decreasing trend in mortality expected in the absence of PER adoption.   

Because the independent variable of interest is measured at state level while the 

dependent variable is measured a county level, throughout the paper we report standard errors 

corrected for clustering at state level. Clustering at county level may be more appropriate if the 

concern is that autocorrelation within county over time is a more important problem than error 

correlation by state over time. Here we see that the results hold under clustering at county level. 

One potential concern is that the results are driven by noise in the data. For instance, if 

populations are very small, the data could indicate large changes in the mortality rate from one 

year to another. Such random changes in mortality rates from one year to another might be 

spuriously associated with the implementation of PER. This is especially a source of concern 
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because the positive impact of the PER is more likely to lead to increases in mortality in 

predominantly rural areas, which are also more likely to have small populations.  

Row [11] thus seeks to reduce the impact of noise in the data by excluding counties with 

very small populations, where there may be extremely high variance in mortality rates. Here we 

thus estimate the main regression specification, but restricted to those county-year observations 

involving populations of at least 10,000 individuals. The results obtained from this specification 

are similar to those obtained from the entire sample, providing reassurance against a noise-driven 

explanation of the estimates.  

Another way to reduce the effect of noise is to aggregate data at the state level. State level 

aggregation also offers an alternative way to account for the existence of common random 

effects at the state level. In the main specification we allowed for such random effects by 

computing standard errors corrected for clustering at the state level. Using state-level data also 

may have significant disadvantages, however. First, such data aggregates over significantly 

different populations. And second, the danger of reverse causality is higher at the state level. 

There is significant variance in mortality rates across counties in a state and any single county is 

unlikely to lead to statewide regulation (cf. the discussion above regarding row [8]); however, 

changes in state level mortality trends could influence state policy makers.  

Row [12] presents results obtained on state-level data for the 1994-2006 period. Controls 

include state and year fixed effects, quadratic state-specific trends, and state-level, time-varying 

controls, such as: age, gender, and race composition, log wage, physicians, education, state 

unemployment rate, state poverty rate, Medicaid enrollment, and state health and hospital 

expenditures. The results we obtain are smaller and less precisely estimated than observed in 

other specifications. This finding is unsurprising, given how demanding the large number of 

fixed effects and state time trends are on the data.2 Nevertheless, even these are consistent to 

those observed with much larger sample sizes.

                                                            
2 There regressions are run on 650 observations, which must identify over 170 coefficients. 
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Table A1. The impact of PER on mortality - all sample (not for publication) 

Mortality 
rate 

Disease 
mortality rate 

Injury 
mortality rate 

[1] Main 0.035 0.045* -0.309* 
(0.020) (0.021) (0.146) 

[2] 1998-2006 0.077** 0.087** -0.275 
(0.028) (0.030) (0.201) 

[3] 1994-2002 0.078 0.089* -0.391 
(0.039) (0.040) (0.226) 

[4] 1996-2004 0.068* 0.076** -0.201 
(0.026) (0.027) (0.166) 

[5] 1997-2002 0.092* 0.102* -0.279 
(0.045) (0.045) (0.215) 

[6] 1-year Lead of PER -0.045 -0.039 -0.191 
(0.034) (0.036) (0.117) 

[7] 2-year Lead of PER -0.000 -0.002 0.088 
(0.023) (0.023) (0.138) 

[8] Drop county of state 
capital 

0.039 0.050* -0.313* 
(0.021) (0.022) (0.144) 

[9] Only adopting states 0.026 0.036 -0.270 
(0.021) (0.022) (0.152) 

[10] Cluster by county 0.035* 0.045** -0.309** 
(0.016) (0.016) (0.080) 

[11] County Pop>10000 0.034 0.045* -0.312* 
(0.020) (0.021) (0.150) 

[12] State level 0.029 0.033 -0.303 
(0.032) (0.034) (0.264) 

Notes: The dependent variable is the log of annual mortality rate per 100,000 people. To improve 
readability the log of mortality rates was multiplied by 10. Models in rows 1 to 11 include county and 
year fixed-effects, and quadratic state specific time trends. Other controls are county gender, age, and race 
composition, log wages, physicians, poverty rate, unemployment rate, education level, Medicaid 
enrollment, and state health and hospital expenditures. Regressions in rows 1 to 11 are weighted, with 
county populations as the weights. Row [12] reports coefficients from a model using state level data. This 
model includes state and year fixed effects and quadratic state specific time trends. It also controls for the 
same covariates as county level specifications. This regression is weighted by state population. 
Robust standard errors clustered at state level are reported in parentheses. 
* significant at 5% level; ** significant at 1% level. 
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In addition we report on findings relating to alternative model specifications. The entries 

in Table A2 refer not to the estimated effects of PER; instead they refer to the estimated 

coefficient and standard errors of interaction variables added to the main model. 

Row [1] reports a test for heterogeneity of the PER effect by timing of adoption. If 

selection is an issue we expect that states that benefit most from such regulation would be the 

first adopters. The first states to adopt the PER are Maryland, North Carolina, Ohio, and Texas in 

19993, while the first large wave of adoptions took place in year 20004. A dummy equal to 1 if 

the state adopted the PER before 2000, and zero otherwise, is interacted with the PER variable 

and the coefficient on this variable is reported here.5 For all three mortality measures the 

estimated coefficient is not statistically significant, providing support for the idea that the early-

adopting states are in fact similar to the later-adopting ones, and thus that the timing of PER 

adoption is exogenous. 

Row [2] of Table A2 reports the estimated coefficient on an interaction term of PER and 

a dummy equal to 1 if the state adopted PER on or after year 2003.6 Here we see that the 

estimated effect of PER among late adopters is not significantly different from the effect among 

earlier-adopting states.  

Row [3] tests the heterogeneity of the PER effect by rurality. The interaction term 

between percent rural and PER is positive and significant, an indication that the PER leads to a 

larger increase in disease mortality in predominantly rural areas than in urban areas. 

Row [4] tests the heterogeneity of the PER effect by physician density. Consistent with 

previous results we find that the PER has a smaller impact on disease mortality in areas with 

higher physician density. 

Row [5] of Table A2 reports tests of heterogeneity of the effect by race. We find that 

PER has a lower effect on disease mortality for blacks, but a larger effect for injury mortality for 

blacks. The former may be explained by differential adoption of technology by race. 

                                                            
3 The first jurisdiction to adopt the PER is the District of Columbia in 1998. DC is not in the sample used in our 
analysis, because data for state health and hospital expenditures are not available for DC. The results are robust to a 
sample including DC and excluding the controls for state health and hospital expenditures. Estimates obtained from 
this alternative specification are: 0.035 (0.021) significant at 10% significance level for mortality; 0.046 (0.022) 
significant at 5% for disease mortality; -0.256 (0.116) significant at 5% for injury mortality. 
4 Ten states adopted PER in 2000. 
5 Using other cut-offs, such as before 2001, delivers similar results. 
6 Using other cut-offs such as after 2002 or after 2004 delivers similar results. 
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Row [6] tests for geographical heterogeneity of the effect of PER. The appearance of 

Figure 2 in the main body of the paper suggests that Southern states are more likely to adopt 

PER, but in fact, the estimated coefficients for the interaction term between PER and southern 

states7 are not statistically significant for any of the mortality measures, rejecting the hypothesis 

of regional geographic heterogeneity of the PER effect. This result also supports our 

identification strategy, for it is consistent with the idea that county fixed effects and quadratic 

state specific trends are able to account for all geographical heterogeneity that may be correlated 

at the same time with both PER adoption and mortality.  

 

Table A2. Tests of heterogeneity of PER impact on mortality- all sample (not for publication) 

Mortality rate 
Disease mortality 

rate 
Injury mortality 

rate 
[1] PER*Early adopter 0.001 -0.009 -0.116 

(0.050) (0.051) (0.257) 

[2] PER*Late adopter 0.033 0.037 0.401 
(0.075) (0.081) (0.386) 

[3] PER*Rural 0.003* 0.003* 0.002 
(0.001) (0.001) (0.003) 

[4] PER*Physicians -0.056** -0.055** -0.041 
(0.013) (0.013) (0.031) 

[5] PER*Black -0.010** -0.009** -0.019* 
(0.002) (0.002) (0.007) 

[6] PER*South 0.005 0.004 0.143 
(0.037) (0.039) (0.229) 

Notes: The dependent variable is the log of annual mortality rate per 100,000 people. To improve 
readability the log of mortality rates was multiplied by 10. All regressions include county and year fixed-
effects, and quadratic state specific time trends. Other controls are county gender, age, and race 
composition, log wages, physicians, poverty rate, unemployment rate, education level, Medicaid 
enrollment, and state health and hospital expenditures. All regressions are weighted by county population. 
Robust standard errors clustered at state level are reported in parentheses. 
* significant at 5% level; ** significant at 1% level. 
 

                                                            
7 Southern states: Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, 
North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia.  
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Section II The Estimated Effect of PER on Morbidity – Robustness Checks 

In addition, we present several alternative specifications for the model estimating the 

impact of PER on morbidity, as measured by number of days lost to illness, using the full sample 

of data.  

Row [1] of Table A3 shows the result using the main specification, which was discussed 

in the text, using the full sample of data. 

Row [2] shows the effects of estimating an OLS with log dependent variable rather than 

negative binomial model. We see that the results are robust to this change in specification.  

Row [3] of Table A3 reveals that only data from adopting states produces a smaller 

estimated effect of PER, but one that is statistically significant despite the exclusion of the 

control states from the sample. 

Row [4] indicates that there is no significant difference between early adopters and the 

rest of the states. There is also no significant difference between late adopters and the rest of the 

states, as shown in row [5]. 

Rows [6]-[8] explore a more in depth analysis of the effect of PER on various 

demographic groups, made possible by the fact that the morbidity data are collected at the 

individual level. Row [6] shows that there is no significant difference between the outcomes by 

gender. In row [7] we see that the impact of PER on blacks is much smaller than on whites. 

Indeed, the net effect of PER on black morbidity is negligible. One explanation for this finding is 

that there are racial differences in use of technology.8 The result is also consistent with some 

previous studies indicating blacks are less likely to access health related electronic resources.9  

Although BRFSS does not have detailed information on income, we can differentiate 

among broad income brackets. Row [8] suggests that the adverse impact of PER diminishes 

slightly as income rises, although these effects too imprecisely estimated to place much reliance 

upon.  

 

                                                            
8 The literature suggests that the racial gap in computer ownership persists after controlling for socioeconomic 
characteristics (Goolsbee and Klenow, 2000) so there may be differences in the rate of technology adoption by race. 
9 Some studies found significant racial divide in probability of looking for health information on-line (Rimer et. al., 
2005; MedlinePlus Survey Results 2005) although other studies suggest the difference is relatively small (Rutten, 
2007) 
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Table A3: The impact of PER adoption on the number of days lost to illness - 
Robustness check using all sample (not for publication) 

Panel A: Alternative specifications 
[1] Main 0.229* 

(0.101) 

[2] OLS (Log dependent variable) 0.054** 
(0.018) 

[3] Only adopting states 0.103** 
(0.037) 

Panel B: Interaction terms 
[4] PER*Early adopter 0.378 

(0.295) 

[5] PER* Late adopter -0.230 
(0.155) 

[6] PER*Female 0.015 
(0.030) 

[7] PER*Black -0.220** 
(0.051) 

[8] PER* Inc 25k-50k -0.053 
(0.047) 

      PER*Inc 50k-75k -0.133 
(0.084) 

      PER*Inc>75k -0.117 
(0.127) 

Notes: Using individual-level data, the dependent variable is the number of days lost to illness in the past 
30 days. The estimates reported in rows [1] and [3] - [8] are marginal effects after negative binomial 
models that control for state and year fixed-effects, and state specific time trends and for gender, race, 
age, income, education, state level physicians per capita, state poverty rate, unemployment rate, Medicaid 
enrollment, and health and hospital expenditures. Row [2] controls for the same variables, but using OLS. 
Robust standard errors clustered at state level are reported in parentheses. 
* significant at 5% level; ** significant at 1% level. 
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Section III: Trends in Mortality Rate 
 
A graph of the trend in mortality in PER-adopting states in the years preceding and following 
PER is presented below.  
 
The solid line shows the behavior of mortality over the full period shown. The two dashed lines 
show the estimated trends for the two sub-periods, up to and after PER. The average rate of 
decline is the same in both sub-periods, but the intercept is higher for the post-PER period, 
implying that PER raised mortality rates. The graph has significant caveats. It is difficult to 
aggregate across time periods in a meaningful manner. We attempted controlling for time fixed 
effects, but it is not at all obvious that time FE can fully address this issue. In the paper we 
included some versions of this picture that retain only states that adopted PER in 2000 or 2001 as 
compared, which eliminates the issue of aggregation across time periods. 
 

 
 
 
Notes: Period t represents the year of adoption of PER. The solid line shows the trend in 
mortality rates (log). Because different states adopted PER at different points in time we retain 
only the residual variation in mortality rates after removing the effect of time. The dashed lines 
represent the fitted lines for the periods t-3 to t, and t+1 to t+3. 
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