5. Metric Spaces
2. Continuity in Metric Spaces

Last time we introduced the concept of a metric space and we considered several examples:
· We looked at  and imbued it with a variety of different metrics to create the metric spaces  and in general .
· Similarly, we looked at the space of continuous functions C[a.b] and added different metrics to it to create spaces such as , and in general 
· We also introduced a number of named inequalities, in particular the Cauchy-Schwartz Inequality (vector and integral version), Minkowski’s inequality (vector and integral version), and Hoelder’s inequality, which are used to establish the triangle inequality for different metrics
Metric spaces with infinite dimensions are possible as well: consider the space of all infinite sequences  such that . Define a metric on this space via 

This metric space is denoted by . Note: the properties of  being a metric follow readily from  by taking limits.

Now that we know several metric spaces, we can define familiar concepts on them:

Definition 2.1: Continuity in a Metric Space
Suppose , where  and  are metric spaces. Then  is continuous at a point  if given any  there exists a  such that whenever  then 
 is continuous on  if it is continuous for all .

This is just our familiar concept of continuity, wrapped in a more abstract setting. However, we can now check continuity for new (and pretty neat) “functions”.

Example 2.2: Let  be defined as . Find a few examples for the function  and determine if it is continuous.

So, the” function”  takes continuous functions  and maps them to their value at . For example:
· 
· 
· 
To work out continuity, we have to use the various metrics: fix an element  and start with any . We want to have that  whenever . In other words, we want

whenever . But that means that we can take  and we have proved continuity of this operator  because


Here is another interesting example. As a matter of fact, all of these examples are totally interesting (I think) because we apply the concept of old-fashioned continuity (graph has no holes; can draw graph without lifting the pencil) and apply it to situations where the graphical interpretation of continuity does not make any sense at all, yet the definition of continuity is so similar to our old fashioned one.

Example 2.3: Consider the operator  defined by mapping an element  of  to another element  in  by dropping the first element of the sequence :

That operator is called the (forward) shift operator. Is it continuous?

First, to get a feel for this operator, we got to look at a few examples:
Take . Then  because . Then 

We can repeatedly apply the operator  to drop the first few elements of the input sequence. For example 

We need to check continuity: in other words, we want to find an  such that  whenever . But with  and  that is equivalent to:

But that is clearly the case, because

and we can take .

Here is one more example about continuity:

Example 2.4: Take  ,. Is  continuous?
As usual, let us get a feel for this operator first:
· 
· 
Now that we kind of know the operator L, we see that by the Fundamental Theorem of Calculus,  is a continuous (even differentiable) function on [0,2], so that L is well defined. As for continuity: If  then 

But this implies continuity by letting 

Definition 2.5: (Discrete Metric)
Let  be some set. We can turn  into a metric space  by endowing it with the discrete metric

As the above definition shows, any set X can be turned into a metric space. However, that metric is not very interesting, since it renders any function as continuous:

Proposition 2.6 (Discrete Metric Space and Continuous Functions)
Any function that maps a discrete metric space to any metric space is continuous.
 
The prove of this proposition is left as an exercise.

Definition 2.6: (Homeomorphism)
If  is a 1-1 mapping from metric spaces  onto  such that both  and  are continuous, then  is called a homeomorphism and  and  are called homeomorphic.

Definition 2.7: (Isometry)
If  is 1-1 a mapping from metric spaces  onto  such that, then  is called an isometric mapping or isometry.

Metric spaces that are isometric have the same metric relations between their elements. They are considered the same metric space, for all intent and purposes.

Exercise: 
1. Show that Hoelder’s inequality implies Cauchy Schwartz (vector version)
2. Show that Minkowski’s inequality (vector version) may fail for .It would be okay to come up with a concrete example.
3. Prove that the function  is a metric on the natural numbers
4. Let  and . Find  in . Note: the answer is a single number
5. Define the vector spaces , , and  for . Give it your best shot (and model your definitions after  and , and ). You do not need to prove anything, just say what you think a good definition might be.
6. For what vector spaces does the abstract definition of continuity reduce to our familiar  one defined in calculus 
7. If we take  by defining (again): , is that operator  continuous? How about  where 
8. Let  the space of all bounded sequences. Add a metric by defining . Then  is a metric space. Define  by setting . Is  continuous?  
9. Show that the real line  and the interval  are homeomorphic.
10. Is the map from example 2.4 1-1? How about onto? Is it a homeomorphism? How about the map from example 2.3? And how about the one from example 2.2?
11. Prove proposition 2.6: Any function that maps a discrete metric space to any metric space is continuous.
12. Find the (open and closed) unit ball for a discrete metric space X. Recall that the open unit ball is  and the closed unit ball is 
13. Let  denote the unit circle in the plane: . Define a map  by . Prove that  is continuous and bijective, but is not a homeomorphism.
14. Let  and  be the following disks in the plane (i.e. in  with the usual Euclidian metric):

Show that  and  are homeomorphic.
15. [bookmark: _GoBack]Show that a bijective isometry between metric spaces is also a homeomorphism
16. Show that  and  are isometric.
