Theorems and Definitions
· [bookmark: _GoBack]Power Series (Definition and Theorem)
· Obtaining series by (a) differentiation, (b)substitution, (c) differentiation, (d) integration, (e) long multiplication, (f) long division, (g) other kind of voodoo magic
· Taylor Series and Theorem
· Lagrange Remainder
· If  is a polynomial then any Taylor series  converges to  for any center .
· Not every Taylor series converges to its generating function
· The Most Beautiful Formula in Mathematics

Part 1
1. Show that the derivative of the exponential function is again the exponential function
2. Assuming that there is one, find the series for  and 
3. Verify that  by computing the n-th derivative of 
4. Find the derivatives of  and 
5. Prove that , i.e. the alternating harmonic series adds up to 
Part 2
1. Find the series expansion for  and 
2. Use a series computed above to prove that  Note that it is interesting that the complicated transcendental number  is a sum of 1 over plus/minus the odd integers. However, the rate of convergence is rather slow; try to approximate  to, say, 4 digits
Part 3
1. Find the first four terms of the power series for  by long multiplication. Verify your answer by taking derivatives.
2. Find the first two terms of the power series for . Verify your answer by writing  and using long multiplication. Finally, verify your answer by taking  derivatives.
3. Find the power series for  by long division. Verify your answer by writing  and finding its power series.
Part 4
1. True or false: If  and  are two  functions such that  for all  then  for all x.
2. Is every McLaurin series a Taylor series? How about the other way round?
3. Does every Taylor series represent its original function? Prove it or give counter example.
4. Use the above theorem to prove the factor theorem for polynomials, which states that  is a factor of the polynomial  if and only if 
Part 5
1. Find the first three nonzero terms in the Taylor series for  on  and estimate the error
2. Find a polynomial approximation for  on  accurate to 
3. Prove the theorem we stated in our last segment, i.e. that for any polynomial.
4. Show that  is equal to its Taylor series for all 
