RSA Cryptography.

1. This question will do a simple RSA encoding and decoding. Assume that the letters of the alphabet correspond to the numbers 1-26. ($A=1, B=2, \ldots, Z=26$; only capital letters are used).
a. If $\boldsymbol{p}=\mathbf{7}$ and $\boldsymbol{q}=\mathbf{1 3}$, what is \boldsymbol{n} and what are the three smallest possible numbers for \boldsymbol{e} ?
b. If $\boldsymbol{p}=7, \boldsymbol{q}=\mathbf{1 3}$, and $\boldsymbol{e}=\mathbf{7}$, what is \boldsymbol{d} (the multiplicative inverse of \boldsymbol{e})?
c. Use (\mathbf{d}, \mathbf{n}) to decrypt the following message, encrypted with the private key (\mathbf{e}, \mathbf{n}) :

35014846016701216950332550704473504474657471347333318447
2. Create your very own private and public key-pairs (e, n) and (d, n). You cannot use any of the n 's we used as examples in class. Send me an email containing your public key. I will use it to encode a secret message just for you. Decode that message and send it back to me in clear text.

