Panel 1
Pullic Key Encryption
Caeser's Cypher. Replace each letter by another one!
Clear text: ABCDEEGHIJKLMNOPQRSTUVWXYZ
Example: Eucole "HELLO": KHOOR
Decorle "ZKDW XS" WHAT UP
Symmetric Key Encryption: security depends on key to be secret, and on how often long text it is
Uned.
Panel 2

Cracking Coresur's Cyler

(1) Brute force: 26! = 403 2914611 (CGO F6375 p40 ODOOD

(2) Sleed the key!

(3) Frequency analysis: letter that occurs most offer: e.

common on letter words: a, I

2-letter phreney: no, on, up.

Works best on long text without changing they!

Prevent crading le huz	
THEY WIT CHUCKING THE MAY!	
1 Inte Force: Igh Blue Cer	e: 300 Tena Flops
360 100000 000 000 FEORS	-
ZG! / 900 TFLOPS - ST all years	
<u> </u>	
	1
(a) 11 to the [1] [1]	
(2) Keep key secret.	•
3	
Panel 4	

3) Frequency Analysis: change Key often!
Lo: Symmetric key encomption in as good as the key is secret!
Here to have secure way to exchange keys!
Problem
4

Panel 5
Q10. 1/ 5. +.
Public Kay Enoryption
, , , , , , , , , , , , , , , , , , ,
Public + Privato Key.
Jublic + Invalo Key.
Encompost with public tens
<u> </u>
Decrypt will private kery
11
5

Panel 6
Dack ground:
L: X→ in invertible ist of g : Y1X st. gof=id
Opposite is called One-way huntion: I(x) is easy to find, but I-1(x) is hard
Trup door One-Way Function: one-way Instance. It is easy to insent it will extra into
1+ in eng, to wont 1+ will extra sign
6

Panel /
Public Key Encryption is barel on the existence of a
RSA Coupto Hopilla
(e,d) pair
e = pulle lay
of a pairate larg
(et R be encryptur hundien. Need for M= mersuze R(e,M)=C and R(d,C)=M
R(e,M)=C and $R(d,C)=M$
7
Panel 8

RSA	Algorithm
Pide	two longs prime numbers pand of a N-p of one-way with is every
1) Comput	6 N-p.of one-way. with is earny fact. is hard
D Solut → (e,	(small) e relatively prince to (p-1)(g-1) n) public kay!
	onv. of e mod (p-1)(g-1) called d
	8

I	have (e,n) = public key ue to a	lue!
o P	ount to xchampe weersoon with Alice Phie quents (e, n) and (d, n).	.
	Gles me (e,n), how public key! T accorde evensure M: Me mod n = C	
Ū	luce. Col mod n = M	
	9	

Example P= (1, q=1)

n=p.q=143 (p-1)(q-1)=10-12-120

a reliption with 120 = 23-). Y, e= 7

(e,n)=(7,143) is public key!

d s.t. de mod 120=1

d.7 mod 120=1

d.7 = 121, 241, 261,481,601,721

d-103/
(103,143) is private key!

Panel 11

Coe home: p=11, d=13, n=143, e=1, d=103

Encompt; scy M=42.

(4) mod 143 = 81

\$1103 mod 143 = 42

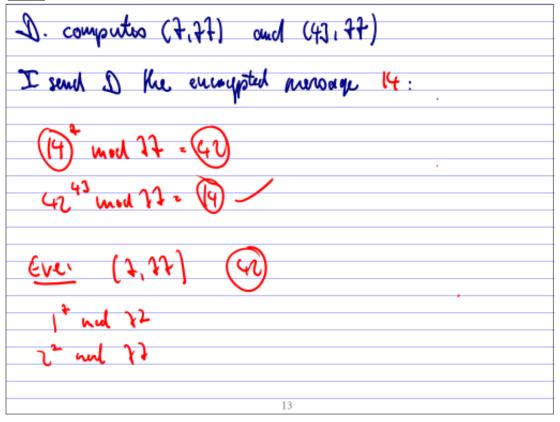
Decompt:

Example: I want to said severt winsup to

David le.

y = 7. (| = }}

e = 7 - 3 (7, 37) public by


d. 2 mod 60 = |

d. 7 mod 60 = |: 61, 121, 191, 241 (701)

d. 301/4 (47)

(43, 77) punt by.

Panel 13

Panel 14

```
Here is another example of RSA encryption and decryption. The parameters used here are
artificially small
Choose two distinct prime numbers, such as p = 61 and q = 53. Compute n = pq giving
  n = 3233
Compute the product (p - 1)(q - 1) = 3120
Choose any number 1 < e < 3120 that is coprime to 3120. Choosing a prime number for e leaves us
only to check that e is not a divisor of 3120.
   e = 17
Compute d, the modular multiplicative inverse of e mod 3120 yielding
   d = 2753
The public key is (n = 3233, e = 17).
The private key is (n = 3233, d = 2753).
For instance, in order to encrypt m = 65, we calculate
   65^17 mod 3233 = 2790
To decrypt c = 2790, we calculate
   2790^2753 mod 3233 = 65
In real-life situations the primes selected would be much larger; in our example it would be
trivial to factor n, 3233 (obtained from the freely available public key) back to the primes p
and q. Given e, also from the public key, we could then compute d and so acquire the private
key.
```

Panel 15
How do I get someone's public key?
THOW AS I HELL SOMEONE? DANGE KON!
•
Deposit public keys will
Delian Inches and a man
40111 01115
"Certification Pankonitage
15

Thus believed RSA Algorithm

(a mod n) + (5 mod n) mod n = (a.5) mod n

(a mod n) · (5 mod n) mod n = (a.5) mod n

Tormat's Cital Thm: It p is point.

ap-1 = 1 mod p

Chinese Remainder Thm: It p, q one prime them

x - a mod p and x - a mod g

(a) x = a mod pa

Panel 17	
Why	does this work? Have (e, n) and (d,n) s.f. R(e,M)-c and R(d,c)-M
	R(d, R(e, M))=M
	(Me)d = Med mod n = M & poor!
I	d=k(p-1)(q-1)+
W.	ed = M * (p-1)(q-1)+ = M . (Mp-) * (g-1) = M (mod p) = M mod p
Scm	slowing Med = M mad pot
Panel 18	17 - M mod n

Weakness of RSA Algorithm
need large keys (=(02451/5) slow
Dhy is it called RSA alg., Ran Rest, Ad: Shawir, Cornard Adhman (MIT)

Panel 19
Security of RSA Algorithm
Depends on the fact that:
B.d. is sum to do
p.g. in early to do
July hand to territ
unless you know hop-dow (private long)
Factoring in believed to be comp. difficult.
<u> </u>
19

Wood + Man: Perieu		
Mou:	Tehe-honce fivel. 1	Def + 1 Q from L category
	20	