Panel 1

$$
f(x)=\left\{\begin{array}{ll}
x & \text { if } x \in[-1,1] \\
0 & \text { she }
\end{array} \quad \text { on }[-\pi, x]\right.
$$

(1) Does of have Fouriow Snis?
fin (pieco unio) combimuls

all denivalives are cont

$$
\begin{aligned}
& a_{n} \cdot \frac{1}{n} \int_{-\pi}^{-\frac{k}{x}} f(x) \cos (n x) d x=\frac{1}{a} \int_{-1}^{-\infty} x \cos (n x) d x=\theta^{1} \text { (oodd andin) } \\
& \sin =\frac{1}{\pi} \int_{-2}^{-\pi \pi} f(x) \sin (3 x) d x=\frac{1}{\pi} \int_{-1}^{1} x \sin (4 x) d x=
\end{aligned}
$$

Panel 2

$$
\begin{aligned}
& \frac{1}{x} \int_{-1}^{1} x \sin |n x| d x=\frac{1}{\pi}\left[-\left.\frac{x}{n} \cos (n x)\right|_{-1} ^{1}+\frac{1}{n} \int_{-1}^{1} \cos (n x) d x\right]= \\
& u=x \quad u^{\frac{1}{2}}=1 \\
& v^{\prime}=\sin \mid n x) \quad v=-\frac{1}{n} \cos (n x) \\
&=\frac{1}{a}\left[-\frac{1}{n} \cos (n)-\frac{1}{n} \cos (-n)+\left.\frac{1}{n} \frac{1}{n} \sin (n x)\right|_{-1} ^{1}\right]= \\
&=\frac{1}{4}\left(-\frac{2}{n} \cos (n)+\frac{1}{n^{2}}(\sin (n)-\sin (n))\right)=\frac{1}{n}\left(-\frac{2}{n} \cos (n)+\frac{2}{n^{2}} \operatorname{san}(n)\right) \\
& a_{n}=\frac{1}{a}\left(\frac{2}{n^{2}} \sin |n|-\frac{2}{n} \cos (n)\right) \\
& g(x)=\sum a_{n} \sin (\omega x)
\end{aligned}
$$

Panel 3
Ex: SeA of continuous functives on $[a, b]$ w_{i} th $p\left(f_{1, n)} \cdot\left(\int\left(\delta(p)-g(n)^{2} d\right)\right)^{1 / 2}\right.$
Denotbed by $C^{2}[a, b]$
Schemerse $\int l\left(11\right.$ (N) $\left.d t=\iint f^{2} d t\right)\left(\int g^{2} d t\right)$
\Rightarrow hooure inemenellyl
Each ‘pout' in walvis spac is a hunclay!

Private Freehand 3

Ex: Set of all iut sequences $x \cdot\left(x_{1} x_{2}, \ldots\right), x_{j} \in \mathbb{R}$,

$$
\begin{array}{ll}
\text { s.t. } \sum_{k=1}^{\infty} x_{k}^{2}<\infty & \text { is a valnic } \\
\rho(x, y)=\left(\sum_{k=1}^{\infty}\left(x_{k}-y_{k}\right)^{2}\right)^{112} & \text { spuce cullend } \\
l^{2}
\end{array}
$$

Reyurb. if $\sum_{k=1}^{\infty} x_{6}^{2}<\infty$ and $\sum y_{6}{ }^{2}<\infty$

$$
\begin{aligned}
& \Rightarrow \quad\left[\left(x_{n}-y_{n}\right)^{2}<\infty \quad\right. \text { lane lyy comp.t. A. } \\
& \left(x_{k} \pm y_{k}\right)^{2}-x_{k}^{2} \pm 2 x_{k} y_{k}+y_{k}^{2} \leqslant 2\left(x_{k}^{2}+y_{k}^{2}\right) \\
& \text { becule } \\
& 0 \leqslant x_{k}^{2} \mp 2 x_{n} y_{n}+y_{n}^{2}=\left(x_{k}=y_{\mu}\right)^{2}
\end{aligned}
$$

Panel 5
Triounde Inequalilys $\rho(x, 2)=\rho(x, y)+\rho(y, 1)$

$$
\left(\Sigma\left(x_{k}-z_{k}\right)^{2}\right)^{1 / 2} \leqslant\left(\sum\left(x_{k}-y_{k}\right)^{2}\right)^{1 / 2}+\left(\sum\left(y_{k}-z_{k}\right)^{2}\right)^{1 / 2}
$$

follows hrom cure \mathbb{R}_{2}^{n},1.e.

$$
\text { all }\left(x_{1}, x_{n-}, x_{n}\right), \rho\left(x_{1}\right)=\left(\sum_{j=1}^{n}\left(x_{1}-y_{i}\right)^{2}\right)^{1 / 2}
$$

Panel 6
$E_{x} \quad \mathbb{R}_{1}^{n}, p(x, y)=\left(\sum_{k=1}^{n}\left(x_{2}-y_{k}\right)^{p}\right)^{1 / p}, p \geq 1$
\mathbb{R}^{n}
$\mathbb{R}_{1}^{n} \quad \mathbb{R}_{p}^{n} \quad$ Minkouski's Inermedily
\mathbb{R}_{2}^{n}
Trimalhu $\left(\sum_{k=1}^{n}\left(x_{k}-z_{k}\right)^{p}\right)^{1 / p} \leq\left(\sum_{n=1}^{n}\left(x_{k}-y_{n}\right)^{p}\right)^{1 / p}+\left(\sum_{k=1}^{n}\left(y_{n}-z_{k}\right)^{p}\right)^{n}$
Depentara $\quad \sum_{n=1}^{n}\left|a_{k} b_{k}\right| \leqslant\left(\sum_{k=1}^{n}|a|^{p}\right)^{1 / p} \cdot\left(\sum_{k=1}^{n}\left|b_{k}\right|^{p}\right)^{1 / q}$,

$$
1 / p+1 / g=1\{\text { Holder's Inequality }
$$

Note Hülder wilh $p=2 \Leftrightarrow$ Cocichy-Schumets!
Panel 7
Summany:
\mathbb{R}_{0}^{u} what is a "poist' in encl,
\mathbb{R}_{1}^{u}
\mathbb{R}_{2}^{u}
$C[a, b]$
$C^{2}[a, b]$
l_{2}
\mathbb{R}_{p}^{u}

Panel 8

Panel 9

Now we can define familiar concepts in new settings
Def, $f: x \rightarrow y, x-(x, p)$ and $y=\left(y, p^{\prime}\right)$ melic spaces. Then t is conliunows at $X_{0}=X$ it:
given es 0 Is >0 st.

$$
\begin{aligned}
& \rho^{\prime}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon \text { whenever } \\
& \rho\left(x, x_{0}\right)<\delta
\end{aligned}
$$

Nos. f: $X \rightarrow 11$ is a function
$f: x \rightarrow y$ is a functional
Panel 11
Ex: $f: C_{[0,1]}^{0} \rightarrow \mathbb{R}, f(g(x))=g(1 / 2)$
Conkimums?
yes

$$
f\left(x^{2}\right)=\frac{1 / 4}{} \quad, f\left(x^{2}\right)=1 / 8, f(\sin \mid x)=\sin (1 / 2)
$$

Is it couth at $x_{0} \in C[0,1]$
if $\rho(x, g)<\delta \Rightarrow \rho(f(x), l(y))<\varepsilon$
 is $\left.\max \left(\left|x_{0}(1)-y(1)\right||<\delta \rightarrow| x_{1}(1) \sim\right)-y\left(\frac{11}{2}\right) \right\rvert\,<\varepsilon$
Take any $\sum>0$, pick $\delta=\mathcal{E}$

$$
\Rightarrow\left|x_{0}\left({ }_{2}^{\prime \prime}\right)-y_{2}\left({ }_{2}^{\prime \prime}\right)\right|<\max _{f \in \cos)}\left|x_{1}(l)-g(t)\right|<\delta=c
$$

Panel 12
$E_{x:} f \ell_{2} \rightarrow l_{2}, f\left(\left(x_{1}, x_{4}\right)\right)=\left(x_{2}, x_{3} \cdot x_{1} \ldots\right)$
Ex: $f\left(\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right)=\left(\frac{1}{2}, \frac{1}{1}, \frac{1}{i},-\right)\right.$ shift operates

$$
\sum\left(\frac{1}{n}\right)^{2}<\alpha
$$

fol? at $x_{0}=\left(x_{1}^{0}, x_{i,}^{0} x_{1,2}^{0}\right) \quad \operatorname{lup}$

$$
\begin{aligned}
& \text { if } \rho\left(x_{0}, x\right)<\delta \delta^{\text {anent }} \rho\left(f\left(x_{0}\right) f(x)\right)<\varepsilon \\
& \left(\sum_{i=1}^{\infty}\left(x_{j}^{0}-x_{j}\right)^{2}\right)^{1 / 2}<\delta \Rightarrow\left(\sum_{i=2}^{n}\left(x_{j}^{0}-x_{j}\right)^{2}\right)^{1 / \varepsilon}<\varepsilon \\
& \text { domain }
\end{aligned}
$$

pick $\delta=\varepsilon$.

Private Freehand 12

Panel 13
Ex:

