Panel 1


Panel 2


Power Senios

$$
f(x):=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}
$$

centur of conv. $x=C$
$\lim \frac{a_{n+1}}{a_{n}}<1$ radiin of couv.: $\lim \frac{a_{n}}{a_{2 n}}=r$
convery unifonvly + absolutels $\quad|x-c| \leqslant \rho<r$
limit Gudires is亿 chech indpeito cout.
cottle and $\frac{d}{d x} \sum_{0}^{\infty} a_{n}(x-c)^{\prime}=\sum a_{n} n(x-c)^{n-1}$
intlle and $\int \sum a_{n}(x-c)^{n} d x=\left.\sum a_{n} \frac{1}{n}(x+1)\right|^{n+1}$

Panel 4
Ex: $\left.\quad \sum_{n=1}^{\infty}\left(\frac{1}{n}\right)(x-2)^{n} \quad|x-2|<\right\}^{(\operatorname{cn} n} \in \operatorname{radias}$
(1) $\lim \frac{d_{n}}{i_{n+1}}=\lim _{n \rightarrow a} \frac{1 / n}{1 / n+1}=1$
(2) $\lim \left|\frac{(x-2)^{n+1} 1 / n+1}{(x-2)^{n} 1 / n}\right|<|x-2| \lim \frac{1 / n}{1 / n} \cdot|x-2|-1<1$

$$
n|x-2|<\frac{1}{1}=1
$$

$x-1: \sum \frac{1}{n}(-1)^{n}$ alt Lhorm series (cown)
$x=\sum=\sum \frac{1}{h} l^{n}=\sum \frac{1}{h}$ harmoni sevies (dv)

Every power sens represents a $C^{\infty}$-function, ie.
Lint. often diffuse
Courene Is every $C^{a}$ function a power series???
Take $f(x):=\sum_{n=0}^{\infty} a_{1}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\ldots$

$$
\begin{array}{ll}
f(c)=a_{0} & f^{\prime}(x)-1 / a_{1}+2 a_{1}(x-c)+3 a_{1}(x c)^{2}! \\
f^{\prime}(c)=a_{1} & f^{\prime \prime}(x)=2 a_{2}+3 \cdot 2 \cdot(x-c)+\ldots \\
f^{\prime \prime}(c)=2 a_{2} & \Rightarrow f^{(4)}(c)=4!a_{n} \\
f^{\prime \prime \prime}(c)=3!a_{3} & \Rightarrow a_{2}=\frac{f^{(1)}(c)}{n!}
\end{array}
$$

Panel 6
If $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$, then $f^{(n)}\left(x_{0}\right)=n^{\prime} \cdot a_{n}$ or $a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}$
Ex: Suppose $\left(\frac{1}{1-x}\right)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Find $a_{n}$

| $n$ |  |  | $f^{\prime}(x)=+1(1-x)^{-2}$ | $11=a_{1}$ |
| :--- | :--- | :--- | :---: | :---: |
| 0 | $f(0)$ | 1 | $f^{\prime \prime}(x)=f 2 \cdot 1(1-x)^{-1}$ | $=a_{2}$ |
| 1 | $f^{\prime}(d)$ | 1 | $f^{\prime \prime \prime}(x)=32 \cdot 1(1-x)^{-4}$ |  |
| 2 | $f^{\prime \prime}(0)$ | 1 | $\Rightarrow \sum_{1-x}^{1}=\sum_{n=0}^{\infty} x^{n} \quad$ gametic |  |

Suppose $\quad f(x)=e^{x}=\sum_{n=0}^{\infty} a_{n} x^{n}$. Find $a_{n}$

$$
\begin{aligned}
& f(0)=s=e^{0} \quad a_{4}=\frac{f^{(n)}|c|}{n!} \\
& f^{\prime}(0)=e^{0}=1 \quad e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
& f^{\prime \prime}(())^{2} \\
& f^{\prime \prime \prime}(0)=1 \quad \\
& f^{\prime}(x)=0+1+\frac{2 x}{2!}+\frac{3 x^{2}}{3!}+\frac{4 x^{3}}{4!}+\cdots \\
&=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
&=e^{x}
\end{aligned}
$$

Panel 8
Ex: Suppose $e^{2 x}=\sum_{n=0}^{\infty} a_{n}(x-1)^{n} \quad c=1$.

$$
\begin{aligned}
& f(0)=1=2^{0} \quad a_{n} \quad a_{n}=\frac{f^{(4)}(0)}{n!} \\
& f^{\prime}(0)=2=2^{\prime} \quad f^{\prime}(x)=2 e^{12} \quad \Rightarrow a_{4}=\frac{2^{n}}{n!} \\
& f^{\prime \prime}(0)=4=2^{2} \quad f^{\prime \prime}(x)=4 e^{2 x} \\
& e^{a x}=\sum_{n=0}^{a} 2^{4} u^{4}(x-2)^{n}
\end{aligned}
$$

Panel 9
Ex Find $\left.\frac{d^{\prime \prime}}{d x^{\prime \prime}}\right|_{x=0}, f(x)=\frac{x^{3}}{1-x^{2}}$
Too la $2 y$ to take H-denv!

$$
\begin{aligned}
\frac{x^{3}}{1-x^{2}} & =x^{3} \frac{1}{1-x^{2}}=x^{3} \frac{1}{1-\left(x^{2}\right)^{2}}=x^{3} \sum_{n=0}^{\infty}\left(x^{2}\right)^{n} \cdot \sum_{n=0}^{\infty} x^{2 n+3}= \\
& =\left(x^{3}+x^{5}+x^{+}+x^{1}+x^{11}+\cdots\right. \\
a_{3} & =1 \quad f^{(20)}(0)=0 \\
a_{5} & =1 \\
n_{2} & =1 \quad 1 \\
a_{11} & =1=\frac{f^{(n)}(0)}{11!} \rightarrow f^{(1)}(0)=1(!!
\end{aligned}
$$

Panel 10
Suppose $\cos (x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Find $a_{n}$

$$
\begin{array}{lll}
f(x)=\cos (x) & f^{\prime}(0)=1 & a_{0}=\frac{1}{0!} \quad \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \\
f^{\prime}(x)=-\sin (x) & f^{\prime}(0)=0 & a_{1}=\frac{\%}{1} \\
f^{\prime \prime}(x)=-\cos (x) & f^{\prime \prime}(0)=-1 & a_{2}=-1 / 2 \\
f^{\prime \prime \prime}(x)=\sin (x) & f^{\prime \prime}(0)=0 & u_{2}=0 \\
\vdots & & a_{1}=1 / 4_{1}^{\prime}
\end{array}
$$

(HE) IA $\sin (x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, frise the tomes


Panel 12
Def: Is $f$ in a $C^{\infty}$ - hunction, hew

$$
\nabla_{f}(x, c)=\sum_{n=0}^{\infty} \frac{f^{(n)}(d)}{n!}(x-c)^{n}
$$

is callear Tayber Sevins $\operatorname{dor} A$ (or is $c=0$, Maclaunin Aenis)

Ex: Fahe $f(x)=x^{3}+2 x^{2}+3 x+4$. Find $T_{1}(x, 0)$ and $\nabla_{f}(x, 1)$ and venily hat $\nabla_{f}(x, 0)=r_{p}(x, 1)=\{|k|$

Panel 13

$$
\begin{array}{lll}
f(x)=x^{3}+2 x^{2}+3 x+4 & \\
f(x)=x^{3}+2 x^{2}+3 x+4 & f(0)=4 & f(1)=10 \\
f^{\prime}(x)=3 x^{2}+4 x+3 & f^{\prime}(0)-3 & f^{\prime}(1)=10 \\
f^{\prime \prime}(x)=6 x+4 & f^{\prime \prime}(0)=4 & f^{\prime \prime}(1)=10 \\
f^{\prime \prime \prime}(x)=6 & f^{\prime \prime \prime}(0)=6 & f^{\prime \prime \prime}(1)=0 \\
f^{\prime \prime \prime \prime}(x)=0 & &
\end{array}
$$



$$
\begin{aligned}
& \begin{aligned}
T_{f}(x, 0)= & \sum_{n=0}^{a} \frac{f^{(n)}(0)}{n!} x^{n}
\end{aligned}=4+\frac{3}{1!} x+\frac{4}{2!} x^{2}+\frac{6}{3!} x^{3}+0 \\
& \\
& =4+3 x+2 x^{2}+x^{3} \\
& \left.T_{f}(x, 1)=10+\frac{10}{1!}(x-1)+\frac{10}{2!}(x-1)^{2}+\frac{0}{13!}(x-1)^{3}=10\right)+10(x-1)+5(x-1)^{2}+(x)
\end{aligned}
$$

Panel 14
Find the Taylor series centered at $x_{0}=0 \mathrm{her}$ :


Panel 15
Find the Taylor series centered at sem for:

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

$f(0)=0$


$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{1(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{f(h 1-\sigma}{h}=\lim _{h \rightarrow 0} \frac{e^{-\frac{1}{h}}}{b_{0}}=
$$

