

Taylor sivis	Millenn 100
Measure Theory	Final 100
. Leses que integration	Quittes 100
Mehic Space	: HU '100

Panel 3
Power Series: 1(x) = Za, (x-c)
center of conv. : X=C lim and < I
converge uniformly+ absolutely /x-c/=p <r< td=""></r<>
limit landers is
cont
chille and dx Za,(x-c) = Zann(x-c)"
untile and Szank-c) dx=Zan in [k-c]"

Panel 4
Ex: 2 (x-2) " 1x-2/<16 modius
α ²
1) lin = - lin = 1
3 lim (x-2) 1 / (x-2) 1 / (x-2) 1 / (x-2) 1 / (x-2) 1
7 x-2/< =]
x-1: Z i (-1) alt Lum series (com)
K-J: Zi 1 - Zi Narmonie Sinàs (de)
4

Panel 5	
Every power si	inis represents a Co-function, i.e. Lind often diffste
Courage Is even	y Companda a power series???
	a, (x-c) = 0,+ a, (x-c)+ a, (x-c)+ a, (x-c)++, (
t(c)- a0	1'(x1 - 1/a, + 2a, (x-c)+30; (xc)2+
f(c) - e,	f"(v)= 2az +3.2. (x-c)+
1"(c) = 2uz	- f(4)(c)=4! an
t (c/ - 2; a2	=) (= \frac{\lambda'_1}{\tau_{\color}(\color)}
	5 S

Panel 6			
		مد	
28	t(x).	Z	2, (x-x.) ", then f (x, 2 n'. a,
		4=0	p(n)()
	Q.		d _n (X _n)
			n' N!
			7 " 0 1
Ex:	Zuppa	L.	$\left(\frac{C}{1-x}\right) = \sum_{n=0}^{\infty} a_n x^n$. Find an
	- 41-	•	N=0
			2
la l	- 1		f'(x)=+[(1-x) . =a,
~		<u> </u>	4 (1 2 (1 1 2) 1 1 2 %
0	£(0)	1	t,(x)=+5.1(1-x)-3 a5 t,(x)=+1(1-x)-1=0'
	t,(9	1	
	* (W	3	S."(x) = 32.1(1-x)-1
2	1 2,(9)	15	, 😋
_	1 della	,,	=> == 5 v grandic remis
7	1 12/01	12	1-X C X
			ν ν Σ

<u>railet 8</u>
Ex. Suppose elx = 2 an(x-1) c=1.
1458
2° 1 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°
6'(0)= 2=2' 1'(x1=2e" => el = 2" => el = 2" = n!
F"(0)=4 71 1"(~)-4 2 x => 01, = 11
· (1) · · · · · · (2) · · · · · · · · · · · · · · · · · · ·
'
1 = T = 1 V-2 "
20 ai c
<u> </u>
8

Panel 9	
Ex. Find dx"/x-0, 1	$(x) = \frac{x^3}{1-x^2}$
You lary to take 11	$\frac{1-(x')}{1-(x')} = x^{2} \sum_{n=0}^{\infty} (x^{2})^{n} = \sum_{n=0}^{\infty} x^{2n+3}$
_	+ 1 " + X + X +
0/3= 0/c=	(15an) (0)=0
N2=1 Con(0)	-> f(11/0) = ((!
ol ₁₁ = =	9 .

Panel 10
Suppose $cos(x) = \sum_{n=0}^{\infty} a_n x^n$. Find a_n $c_1(x) = cos(x)$
P"(x1=-cen(x) (1)(0)=0 U_3-0 F"(x1=sin(x) (0)=0 U_3-0 A=14. HW Sin(x1-\(\frac{x}{2}\) \and he forms
10

Panel 12

Def: It is a C^{∞} -hunchion, hun $T_{\Gamma}(x,c) = \sum_{N=0}^{\infty} \frac{f^{(N)}(c)}{N!}(x-c)^{N}$ is called Taylor Serin for A (or if c=0,

Maclaunin Paris)

Ex: Value $f(x) = x^{2} + 2x^{2} + 3x + 4$. Find $T_{\Gamma}(x,0)$ and $T_{\Gamma}(x,1)$ and varily that $T_{\Gamma}(x,0) = f(x)$

Panel 13				
t(x/ x x + 1x + 1x +	4			
f(x/=x3+ 2x4 3x44	f(0)=4	P(1)-10		
p'(x) = 3x + 4x + 3	C401-7	tı(11 × 10		
c"(x)=6x+4	£"(0)=4	t,(1) = 10		
c""(~1 - 6	C" (o)-C	t(11 - B		
C+41 (-/ = 0	· ·			
<u> </u>		,		
76 (x,0) = = = = = + (1) (0) " X = 4	+ 3 + 4 + 1 × 1 × 1	<u>6</u> 2 4 0		
= 4 + Jx + 2x + x 3				
1 (x,1/0 10+ (1/(x-1)+ 5/0)	c-(2+ @(x-()3 =	10)+10(x-1)+5(x-1). (x+		

