Complex Analysis Exam 2

This is a take-home exam. You may use the book or your notes as you wish, but you must complete each problem on your own. Show all your work (and be neat). Due: Friday, May 9, 2014-no exceptions!

1. Perform the following integrations along the indicated contours. You can use any method you like.
a) $\int_{C} \frac{e^{z}}{z-2} d z, C$ the unit circle $|z|=1$
b) $\int_{C} \frac{e^{i z}}{z^{3}} d z, \mathrm{C}$ the square with corners $1, \mathrm{i},-1$, and -i .
c) $\int_{C} \frac{\cos (2 z)}{z(z-2)} d z, \mathrm{C}$ the circle $|z-3|=2$
d) $\int_{C} \frac{2 z+1}{z(z+1)} d z, C$ the circle $|z|=2$
2. If f is entire, $f(1)=2, \mathrm{f}(0)=0$, and $\left|f^{\prime}(z)\right|<M$ then show that $f(z)=2 z$
3. Find the Taylor series for each given function centered at the point $z_{0}=0$. Specify the radius of convergence for each series.
a) $f(z)=z^{3} \cos \left(z^{2}\right)$
b) $f(z)=\frac{z}{3-2 z}$
4. Find a Laurent series for the given function centered at the given point z_{0} that converges in the specified domain and list, specifically, the residue.
a) $f(z)=z^{3} e^{\frac{1}{z}}, z_{0}=0$, convergent in domain including $z=1$
b) $f(z)=\frac{1}{3-4 z+z^{2}}, z_{0}=0$, convergent in domain including $z=2$
5. Consider the function $f(z)=\frac{e^{z}}{(3-z)(z-1)}$
a) If you were to find a Taylor series for this function centered at $\mathbf{z}=\mathbf{0}$ converging for $|z|<R$, then R has what value?
b) If you were to find the Laurent series centered at $z=i$ converging in the largest annulus $r<|z-i|<R$ including the point $z=2$, then what are r and R ?
6. Use the Residue Theorem to evaluate
a) $\int_{C} z^{4} e^{2 / z} d z$, where C is the circle $|z-i|=42$
b) $\int_{C} \frac{e^{z}-1}{(z-1)(z-2)(z-4)} d z$, where C is the circle $|z|=3$
7. Recall that a function $f(z)$ has a pole of order \boldsymbol{k} at a point z_{0} if the Laurent series centered at z_{0} has only finitely many non-zero coefficients for $n<0$ and $a_{n}=0$ for all $n<-k$. For example ${ }^{(*)}$, a function with a pole of order 2 at z_{0} has a Laurent series

$$
f(z)=\sum_{n=-2}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=a_{-2}\left(z-z_{0}\right)^{-2}+a_{-1}\left(z-z_{0}\right)^{-1}+a_{0}+a_{1}\left(z-z_{0}\right)^{2}+\ldots
$$

with $a_{-2} \neq 0$, i.e. a pole of order 2 means that the smallest negative non-zero coefficient of the Laurent series is a_{-2}.
a) Prove the following Theorem: If $f(z)$ is analytic in a domain D except at a point $z=z_{0}$, and that point z_{0} is a pole of order 1 , then

$$
\operatorname{Res}\left(f, z_{0}\right)=a_{-1}=\lim _{\mathrm{z} \rightarrow \mathrm{z}_{0}}\left(\mathrm{z}-\mathrm{z}_{0}\right) \mathrm{f}(\mathrm{z})
$$

b) The function $f(z)=\frac{\sin (2 z)}{z^{2}(z+1)(z-3)}$ has poles of order 1 at $z_{0}=-1,0,3$. Use the above theorem to find the residues at those poles. Then use the Residue theorem to find

$$
\int_{C} \frac{\sin (2 z)}{z^{2}(z+1)(z-3)} d z
$$

where C is a circle centered at zero with radius 2 .
EXTRA CREDIT: Prove that if $f(z)$ has a pole of order 2 at z_{0} then

$$
\operatorname{Res}\left(f, z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(\frac{d}{d z}\left(z-z_{0}\right)^{2} f(z)\right)
$$

Hint: Write out the series for f centered at z_{0} with a pole of order 2 , multiply that series by $\left(z-z_{0}\right)^{2}$ and simplify. Then take the derivative and finally take the limit. If you do this carefully, the proof will do itself.
${ }^{(*)}$ Here are a few more examples to illustrate poles of order k:

- $g(z)=\frac{1}{z(z-1)}$ has poles of order 1 each at $\mathrm{z}=0$ and $\mathrm{z}=1$. To see that, we need to find the Laurent series centered at $\mathrm{z}=0$ and another one centered at $\mathrm{z}=1$.
The Laurent series centered at 0 is:

$$
\frac{1}{z(z-1)}=\frac{1}{z} \frac{-1}{1-z}=\frac{1}{z}\left(-\sum_{n=0}^{\infty} z^{n}\right)=-z^{-1}-1-z-z^{2}-z^{3}-\cdots
$$

The Laurent series centered at 1 is:

$$
\frac{1}{z(z-1)}=\frac{1}{z-1} \frac{1}{z}=\frac{1}{z-1} \frac{1}{1+(z-1)}=\frac{1}{z-1}\left(\sum_{n=0}^{\infty}(-1)^{n}(z-1)^{n}\right)=(z-1)^{-1}-1+(z-1) \ldots
$$

Note that $\operatorname{Res}(f, 0)=-1$ and $\operatorname{Res}(f, 1)=1$ - check that against the above theorem

- $f(z)=\frac{e^{z}-1}{z^{3}}$ has a pole of order 2 (not 3 which you might originally think) at $\mathrm{z}=0$ because

$$
\frac{e^{z}-1}{z^{3}}=\frac{1}{z^{3}}\left(\left(1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots\right)-1\right)=\frac{1}{z^{3}}\left(z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots\right)=z^{-2}+\frac{z^{-1}}{2!}+\frac{1}{3!}+\frac{z}{4!}+\cdots
$$

Note that the residue of f is $1 / 2!$ - check this against the above extra credit problem.

