Complex Analysis Exam 2

This is a take-home exam. You may use the book or your notes as you wish, but you must complete each problem on your own. Show all your work (and be neat). Due: last day of finals - no exceptions!

1. Perform the following integrations along the indicated contours. You can use any method you like.
a) $\int_{C} \frac{e^{z}}{z-2} d z, C$ the unit circle $|z|=1$
b) $\int_{C} \frac{e^{i z}}{z^{3}} d z, \mathrm{C}$ the square with corners $1, i,-1$, and -i .
c) $\int_{C} \frac{\cos (2 z)}{z(z-2)} d z, \mathrm{C}$ the circle $|z-3|=2$
d) $\int_{C} \frac{2 z+1}{z^{2}\left(z^{2}+1\right)} d z, C$ the circle $|z|=2$
e) $\int_{C} z^{4} e^{2 / z} d z$ C the circle $|z-i|=42$
2. Find the Taylor series for each given function centered at the point $z_{0}=0$. Specify the radius of convergence for each series.
a) $f(z)=z^{3} \cos \left(z^{2}\right)$
b) $f(z)=\frac{z}{3-2 z}$
c) $f(z)=\ln (1+z)$
3. Find a Laurent series for the given function centered at the given point z_{0} that converges in the specified domain.
a) $f(z)=z^{3} e^{\frac{1}{z}}, z_{0}=0$, convergent in domain including $z=1$
b) $f(z)=\frac{1}{3-4 z+z^{2}}, z_{0}=0$, convergent in domain including $z=2$
4. Consider the function $f(z)=\frac{e^{z}}{(3-z)\left(z^{2}-1\right)}$ If you were to find the Laurent series centered at $z=i$ converging in the largest annulus $r<|z-i|<R$ including the point $z=2$, then what are r and R ?
5. Each of the following functions has one or more isolated singularity. Identify each singularity and classify it as removable, pole, or essential. If it is a pole, find its order. Also, find the residue at each singularity.
a) $f(z)=z^{3} \cos \left(\frac{1}{z}\right)$
b) $g(z)=\frac{z}{\left(z^{2}+1\right)(z+1)^{2}}$
c) $h(z)=\frac{e^{z}-1}{z}$
6. Use the (complex) Residue Theorem to evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{4+x^{4}} d x$. Make sure to justify each step. Hint: the answer is $\pi / 2$

Extra credit: An analytic function $f(z)$ is said to have a zero of order m at z_{0} if $f(z)=\sum_{n=m}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, i.e. the first non-zero coefficient in the Taylor series for f is a_{m}. Suppose $f(z)$ is analytic near z_{0} with a zero of order k at z_{0} Show that $\frac{f^{\prime}(z)}{f(z)}$ has a pole of order 1 at z_{0}. Hint: factor what you can from $f(z)$, then work out $f^{\prime}(z) / f(z)$ and use a theorem on what it means to have a pole of order m (or 1 in our case).

