Complex Analysis Exam 2

This is a take-home exam. You may use the book or your notes as you wish, but you **must** complete each problem on your own. Show all your work (and be neat). Due: last day of finals – **no** exceptions!

- 1. Perform the following integrations along the indicated contours. You can use any method you like.

 - a) $\int_C \frac{e^z}{z-2} dz$, C the unit circle |z|=1 b) $\int_C \frac{e^z}{z^3} dz$, C the square with corners 1, i, -1, and -i.
 - c) $\int_{C} \frac{\cos(2z)}{z(z-2)} dz$, C the circle |z-3|=2 d) $\int_{C} \frac{2z+1}{z^2(z^2+1)} dz$, C the circle |z|=2
 - e) $\int_C z^4 e^{\frac{2}{z}} dz$ C the circle |z i| = 42
- 2. Find the Taylor series for each given function centered at the point $z_0 = 0$. Specify the radius of convergence for each series.
 - a) $f(z) = z^3 \cos(z^2)$
- b) $f(z) = \frac{z}{3 2z}$

- c) $f(z) = \ln(1+z)$
- 3. Find a Laurent series for the given function centered at the given point z_0 that converges in the specified domain.
 - a) $f(z) = z^3 e^{\frac{1}{z}}$, $z_0 = 0$, convergent in domain including z = 1
 - b) $f(z) = \frac{1}{3-4z+z^2}$, $z_0 = 0$, convergent in domain including z = 2
- 4. Consider the function $f(z) = \frac{e^z}{(3-z)(z^2-1)}$ If you were to find the Laurent series centered at z=iconverging in the largest annulus r < |z - i| < R including the point z = 2, then what are r and R?
- 5. Each of the following functions has one or more isolated singularity. Identify each singularity and classify it as removable, pole, or essential. If it is a pole, find its order. Also, find the residue at each singularity.

 - a) $f(z) = z^3 \cos\left(\frac{1}{z}\right)$ b) $g(z) = \frac{z}{(z^2 + 1)(z + 1)^2}$ c) $h(z) = \frac{e^z 1}{z}$
- 6. Use the (complex) Residue Theorem to evaluate $\int_{-\infty}^{\infty} \frac{x^2}{4+x^4} dx$. Make sure to justify each step. *Hint*: the answer is $\pi/2$

Extra credit: An analytic function f(z) is said to have a zero of order m at z_0 if $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$, i.e. the first non-zero coefficient in the Taylor series for f is a_m . Suppose f(z) is analytic near z_0 with a zero of order k at z_0 Show that $\frac{f'(z)}{f(z)}$ has a pole of order 1 at z_0 . Hint: factor what you can from f(z), then work out f'(z)/f(z) and use a theorem on what it means to have a pole of order m (or 1 in our case).