Complex Analysis Exam 2

This is a take-home exam. You may use the book or your notes as you wish, but you must complete each problem on your own. Show all your work (and be neat). Due: last day of finals – no exceptions!
1.	Perform the following integrations along the indicated contours. You can use any method you like.
a) 


, C the unit circle 	b)	, C the square with corners 1, i, -1, and –i.
c) 



,  C the circle 	d)	, C the circle 
e) 

 C the circle 

2.	Find the Taylor series for each given function centered at the point . Specify the radius of convergence for each series.



a)		b)		c)	

3.	Find a Laurent series for the given function centered at the given point  that converges in the specified domain.



a)	, , convergent in domain including 



b)	, , convergent in domain including 






4.	Consider the function   If you were to find the Laurent series centered at converging in the largest annulus  including the point , then what are  and ?

5.	Each of the following functions has one or more isolated singularity. Identify each singularity and classify it as removable, pole, or essential. If it is a pole, find its order. Also, find the residue at each singularity.



a)		b)		c)	


[bookmark: _GoBack]6.	Use the (complex) Residue Theorem to evaluate . Make sure to justify each step. Hint: the answer is 










Extra credit:	An analytic function  is said to have a zero of order m at  if , i.e. the first non-zero coefficient in the Taylor series for f is .  Suppose  is analytic near  with a zero of order  at  Show that  has a pole of order 1 at . Hint: factor what you can from f(z), then work out f’(z)/f(z) and use a theorem on what it means to have a pole of order m (or 1 in our case).
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