Complex Practice Exam 1

This practice exam contains sample questions. The actual exam will have fewer questions, and may contain questions not listed here.

- 1. Be prepared to explain the following concepts, definitions, or theorems:
 - A complex number, polar coordinates, rectangular coordinates
 - Add, Multiply, Sub, Div, Conjugate, abs Value, graphical interpretations • of these
 - Complex roots •
 - Mapping properties of complex functions
 - $\operatorname{Arg}(z)$ and $\operatorname{arg}(z)$
 - The limit of a complex function f(z) as z approaches c is L
 - Continuity of a complex function f(z) at a point z = c
 - The complex derivative of a function f(z)
 - Analytic function and Entire function
 - CR equations
 - f(z) analytic & f'(z) = 0, f(z) analytic & f-conjugate analytic, f(z) analytic and |f(z)| constant
 - Harmonic function and harmonic conjugate of a function u (incl. how to find)
 - e^z , $\sin(z)$, $\cos(z)$, $\log(z)$, and $\log(z)$
 - Euler's Formula, De Moivre's Formula
 - Complex parametric functions z(t), their integrals and derivatives
 - Different paths (line segments and circles)
 - **Contour Integrals** •
- (a) $\operatorname{Re}(z) = 1$ =) $t = X + t^{1}y$, $\operatorname{Re}(2) = | \quad (z) = | =)$ vertical line through x = 1. (b) |z-1|=2 $\sqrt{|x-1|^{2} + |y|^{2}} = 2$ =) $(x-1)^{2} + y^{2} = 4$ =) circle centre t = 1, rathing 2 2. Describe the set of points z such that (c) $Arg(z) = \frac{\pi}{4}$ $2 - \Gamma e^{i\pi}$, $Arg(2) = \frac{\pi}{4}$, $F_{2} = \frac{\pi}{4}$, $F_{2} = \frac{\pi}{4}$, $F_{2} = \frac{\pi}{4}$ is many chargenal, pos. purt, Let z = 1 + i. Draw, in one coordinate system, \overline{z} , $\frac{1}{2}$, z^{3} and $z^{\frac{1}{4}}$.

see sook

3. Let z = 1 + i. Draw, in one coordinate system, \overline{z} , $\frac{1}{z}$, z^3 , and $z^{\frac{1}{4}}$

4. Compute/simplify the following and find real and imag parts:

compute/simplify the following and find real and imag parts:
a)
$$|(\overline{1+i})(1-i)i| = |(1-i)^2 i| = |(1-i)^2 i| = (\sqrt{i})^2 i| = (\sqrt{i})^2 i| = 2$$

 $-\overline{1}m(|-i|)$

$$(b) \frac{i(1+i)^{3}}{(1-i)^{2}} = \frac{e^{i\frac{\pi}{2}} \left[\int_{12}^{1} \left(e^{i\frac{\pi}{4}} \right) \right] \int_{12}^{2}}{\left(\int_{12}^{1} e^{-i\frac{\pi}{4}} \right)^{2}} = \frac{2^{\sqrt{2}}}{2^{1/2}} \cdot e^{i\left(\int_{12}^{\pi} 2^{-i\frac{\pi}{4}} \right)^{2}} = \frac{1}{\sqrt{2}} e^{i\left(\int_{12}^{\pi} 2^{-i\frac{\pi}{4}} \right)^{2}} = \frac{1}{\sqrt{2}} e^{i\left(\int_{12}^{12} 2^{-i\frac{\pi}{4}} \right)^{2}} = \frac{1}{\sqrt{2}}$$

5. Find the fourth roots of -1, i.e. $\sqrt[4]{-1}$, and display them graphically.

 $F_{1}^{1} = \left(e^{i \pi} \right)^{1/4} = e^{2 \left(\frac{\pi}{4} + \frac{24e\pi}{4} \right)}$

Do the same for the fifth roots of -1

$$(-1)^{1/T} = \left(e^{i\pi} \right)^{1/T} = e^{2k\pi}$$

and of
$$(1+i)$$
.

$$\begin{bmatrix} \frac{1}{12} & e^{\frac{1}{12}\pi/4} \end{bmatrix}^{1/4} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ & 2 & e^{\frac{1}{10}\pi/4} \end{bmatrix}^{1/4} = \frac{1}{10} + \frac{1}$$

6. Find the image of the line
$$y = 2x$$
 under the map $f(z) = z - 1$.
 $y - [x = 0 + [k]_0 + \frac{1}{2} + \frac{1$

- 8. Consider the following questions about analytic functions.
 - a) If $f(z) = \frac{1}{(z^2 + 1)^2}$ then determine where, if at all, the function is analytic. If it is analytic, find the complex derivative of *f*.
 - I we analytic #7+±i. The derivative in f((2)= -2(2+1)-3. 24 , 2 +ti
 - **b)** If $f(z) = \overline{x^3 3xy^2 + i(3x^2y y^3)}$ then determine where, if at all, the function is analytic. If it is analytic, find the complex derivative of f.

$$U_{x^{2}} J_{x^{2}} - J_{y^{2}} \qquad U_{y^{2}} J_{x^{2}} - J_{y^{2}} \qquad U_{y^{2}} G_{xy} \qquad U_{y^{2}} G_{xy} \qquad U_{y^{2}} G_{xy} \qquad So CR one have to (xy) = 0 f'(1) - 1x^{2} - 1y^{2} + 6xy = 1 + 2x^{2}$$

9. Decide which of the following functions are analytic, and in which domain they are analytic. If a function is analytic, find its complex derivative:

(a)
$$f(z) = \frac{e^{z} + 1}{e^{z} - 1}$$
 analytic is $e^{z} + 1$ and $e^{z} + 1$

7

10. Consider the function $u(x, y) = e^x \sin(y)$. Is it harmonic ? If so, find its harmonic conjugate.

$$U = e^{x} \operatorname{sin}(q)$$

$$U_{x} = e^{x} \operatorname{sin}$$

(b)
$$u(x,y) = e^{y} \cos(x)$$

 $u_{x^{2}} - e^{y} \sin(x)$
 $u_{x^{2}} - e^{y} \sin(x)$
 $u_{y} = e^{y} \cos(x)$
 $u_{y} = e^{y} \cos(x)$
 $u_{x^{2}} - e^{y} \cos(x)$
 $u_{x^{2}} - e^{y} \cos(x) + C'(x) = \frac{1}{2} - u_{y} - e^{y} \cos(x)$
 $= \sum_{x^{2}} - e^{y} \cos(x) + C'(x) = \frac{1}{2} - u_{y} - e^{y} \cos(x)$
 $= \sum_{x^{2}} - e^{y} \cos(x) - \sum_{x^{2}} - e^{y} \sin(x) + C(x)$
 $= \sum_{x^{2}} - e^{y} \sin(x) + C'(x) = \frac{1}{2} - \frac{1}{2}$

11. Please find the following numerical answers:

(a)
$$e^{2+2i}$$
,

$$= e^{-i\pi} (cn(2) + iii(2))$$
(b) $cos(\pi+i)$, = $\frac{1}{2} \left(e^{i(\pi+i)} - i(\pi+i) \right) = \frac{1}{2} \left(e^{i\pi} e^{-i\pi} + e^{-i\pi} e^{-i\pi} \right) = \frac{1}{2} \left(e^{-i\pi} - e^{-i\pi} \right) = \frac{1}{2} \left(e^{-i\pi} - e^{-i\pi} \right)$

(c)
$$\sin\left(i-\frac{\pi}{2}\right)$$
, $=\frac{1}{2!}\left(e^{\frac{1}{2}\left(i-\frac{\pi}{2}\right)}-\frac{-i(\hat{L}-\frac{\pi}{2})}{e}\right)=\frac{1}{2!}\left(e^{\frac{1}{2}e^{-\frac{\pi}{2}}}-\frac{\pi}{2!}e^{\frac{1}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2!}\left(e^{\frac{1}{2}}+e^{-\frac{\pi}{2}}\right)=-\frac{1}{2$

.

.

(d)
$$\log(-2)$$
, = $\log \left(2e^{i\pi}\right) = \ln\left(2\left|+i\right|\pi + i\left(\pi + 1h\pi\right)\right)$
(e) $\log(1+i) = \cos\left(\sqrt{2}e^{i\pi}\right)$. $\ln(\sqrt{2}) + i\pi = \frac{1}{2}\ln(2) + i\pi + \frac{1}{2}$

14 Solve the following equations for z.

~

(a)
$$z^{4} + 1 = 0$$
,
 $4 = \sqrt[4]{-1}$, see above
(b) $|e^{2z}| = 3$, $e^{2z} = 3 = 4 = \frac{4\pi |T|}{2} + i\frac{4}{2} + i\frac{4}{2$

15 Use the definition of derivative to show that the functions $f(z) = \operatorname{Re}(z)$ is nowhere differentiable. $f(z_i) = \operatorname{Re}(z) = \chi$ $f(z_i) = \operatorname{Re}(z$

Use the CR equations to show that the function $f(z) = \overline{z}$ is nowhere differentiable.

$$\begin{pmatrix} uv |_{x^{2}} & u_{y}v + u u_{y} \\ \Rightarrow & uv |_{x^{2}} & uv |_{x^{2}} & uv |_{x^{2}} & uv |_{y^{2}} & uv |_{y^{2}} \\ \end{cases}$$
Show that if v is the harmonic conjugate of u, then the product u v is harmonic.

$$\begin{pmatrix} uv |_{x^{2}} & u_{y}v + u u_{y} \\ harmonic. \end{pmatrix} \quad alvo \quad (uv |_{y^{2}} = u_{yy}v + 2u_{y}v_{y} + u u_{yy}v \\ uv + uv |_{y^{2}}v \\ uv + uv |_{y^{2}}v \\ uv + uv |_{y^{2}}v \\ v & harwow \quad uv + vy = 0 \\ uv + vy = uv |_{y^{2}}v + uv |_{y^{2}}v \\ uv + vv |_{y^{2}}v \\ uv + vv |_{y^{2}}v \\ uv + vv |_{y^{2}}v \\ uv |_{y^{2}}v + 2u_{y}v \\ uv + vv |_{y^{2}}v \\ uv |_{y^{2}}v + 2u_{y}v \\ uv |_{y^{2}}v \\ uv |_{$$

16 Show that
$$|e^z| \le 1$$
 if $\operatorname{Re}(z) \le 0$
 $|e^{2}| = |e^{x} e^{|y|}| = e^{x} < |y|$ $\operatorname{Re}(z) = x < 0$

17 State De Moivre's formula. Then use it to prove the trig identity sin(2x) = 2sin(x)cos(x)

$$(e^{it})^{2} = (e^{2it}) \qquad \text{or } (\cos t + i \operatorname{likt})^{2} = \cos 2t + i \operatorname{sik}(2t) \quad - \cos^{2}(t) - \operatorname{sik}^{*}(t) + 2i \cos(t) \operatorname{sik}(t) = \cos(2t) + i \operatorname{sik}(2t) \quad - \cos^{2}(t) - \operatorname{sik}^{*}(t) + 2i \cos(t) \operatorname{sik}(t) = \cos(2t) + i \operatorname{sik}(2t)$$

$$\xrightarrow{} \cos^{2}(t) - \operatorname{sik}^{*}(t) = \cos(2t) \quad \operatorname{ound} \quad 2\cos(t) \operatorname{sik}(t) = \operatorname{sik}(2t)$$

18 Show that the function e^{iz} is periodic with period 2π

19 Show that the function sin(z) is unbounded

$$\lim_{t \to \infty} \sinh[it] = \lim_{t \to \infty} \left| \frac{1}{it} \left(e^{i \left[it \right]} - e^{-i \left[it \right]} \right| = \lim_{t \to \infty} \left| \frac{1}{i} \left[e^{-t} - e^{t} \right] \right| = \infty$$

20 Show that the function $f(z) = z\overline{z} + z + \overline{z} + 2x$ cannot be an analytic function.

21 Prove that
$$\sin^{2}(z) + \cos^{2}(z) = 1$$
 (Hint: take the derivative of

$$f(z) = \sin^{2}(z) + \cos^{2}(z))$$

$$\int_{a}^{b} \left(s_{1}b_{n}^{2} \left(s_{1}b_{n}^{2} \cos^{n}(y) \right) = 2 s_{1}b_{n}^{2} \left(s_{1}b_{n}^{2} \cos^{n}(y) \right) + 2 \cos^{n}(y) + 2$$

22 Prove the following theorem: If f(z) is an analytic function with values that are always imaginary, then the function must be constant.

23 Prove the following theorem: if is a harmonic function in an open set U (i.e. h is twice continuously differentiable and $\frac{\partial^2}{\partial x^2}h + \frac{\partial^2}{\partial y^2}h = 0$ in the open set U), then the complex function $f(z) = \frac{\partial}{\partial x}h(x,y) - i\frac{\partial}{\partial y}h(x,y)$ is an analytic function in U.

24 Find complex parametric functions representing the following paths: (a) a straight line from –i to i,

$$f(t) = -i + f(z_i), t \in [0,i]$$

(b) the right half of a circle from -i to i,

(d) a circle centered at 1+i of radius 2 flag

25 Evaluate

a. z'(t) for z(t) = cos(2t) + i sin(2t)

b $\int_{0}^{\pi} z(t) dt \text{ for } z(t) = (5+4i)e^{3it}$ $\int_{0}^{\pi} (\Gamma_{1}(4i))e^{2it} dt = (\Gamma_{1}+4i)\int_{0}^{\pi} e^{2it} dt = (5+4i)\int_{0}^{\pi} e^{3it}\int_{0}^{\pi} z(\Gamma_{1}+4i)e^{2it} dt = \frac{1}{3i}(\Gamma_{1}+4i)(e^{3it}-1)e - \frac{2}{3i}(\Gamma_{1}+4i)e^{2it} dt = \frac{1}{3i}(\Gamma_{1}+4i)(e^{3it}-1)e - \frac{2}{3i}(\Gamma_{1}+4i)e^{2it} dt = \frac{1}{3i}(\Gamma_{1}+4i)e^{2it} dt = \frac{1}$

26 Evaluate

a.
$$\int iz^{2} + 3dz \text{ where } \gamma \text{ is a line segment from -1-i to 1+i}$$

$$7(4) = -(-i + 4(1+i - (-1-i)) = -(-i + 2(1+i)) + 3) = -(-i + 2(1+i)) + 3 = -(-i$$

b. $\int_{\gamma} \frac{1}{z} dz \text{ where } \gamma \text{ is a circle radius 2 centered at the origin}$ $\frac{1}{\gamma} \frac{1}{z} \frac{$