
Complex Analysis Exam 2 

 

This is a take-home exam. You may use the book or your notes as you wish, but you must complete each 

problem on your own. Show all your work (and be neat). Due: last day of finals – no exceptions! 

1. Perform the following integrations along the indicated contours. You can use any method you like. 
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2. Find the Taylor series for each given function centered at the point 00 =z . Specify the radius of 

convergence for each series. 
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3. Find a Laurent series for the given function centered at the given point z0  that converges in the specified 

domain. 
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 If you were to find the Laurent series centered at iz =

converging in the largest annulus Rizr <−< ||  including the point 2=z , then what are r  and R ? 

 

5. Each of the following functions has one or more isolated singularity. Identify each singularity and 

classify it as removable, pole, or essential. If it is a pole, find its order. Also, find the residue at each 

singularity. 
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6. Use the (complex) Residue Theorem to evaluate ∫
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Extra credit: An analytic function )(zf  is said to have a zero of order m at 0z  if ∑
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i.e. the first non-zero coefficient in the Taylor series for f is ma .  Suppose )(zf  is analytic near 0z  with a 

zero of order k  at 0z  Show that 
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zf
 has a pole of order 1 at 0z . Hint: factor what you can from f(z), 

then work out f’(z)/f(z) and use a theorem on what it means to have a pole of order m (or 1 in our case). 


