Complex Practice Exam 1

This practice exam contains **sample** questions. The actual exam will have fewer questions, and may contain questions not listed here.

- 1. Be prepared to explain the following concepts, definitions, or theorems:
 - A complex number, polar coordinates, rectangular coordinates
 - Add, Multiply, Sub, Div, Conjugate, abs Value, graphical interpretations of these
 - Complex roots
 - Mapping properties of complex functions
 - Arg(z) and arg(z)
 - The limit of a complex function f(z) as z approaches c is L
 - Continuity of a complex function f(z) at a point z = c
 - The complex derivative of a function f(z)
 - Analytic function and Entire function
 - CR equations
 - f(z) analytic & f'(z) = 0, f(z) analytic & f-conjugate analytic, f(z) analytic and |f(z)| constant
 - Harmonic function and harmonic conjugate of a function u (incl. how to find)
 - e^z , $\sin(z)$, $\cos(z)$, $\log(z)$, and $\log(z)$
 - Euler's Formula, De Moivre's Formula
 - Complex parametric functions z(t), their integrals and derivatives
 - Different paths (line segments and circles)
 - Contour Integrals
- 2. Describe the set of points z such that (a) Re(z) = 1 (b) |z-1| = 2 (c) $Arg(z) = \frac{\pi}{4}$
- 3. Let z = 1 + i. Draw, in one coordinate system, $\frac{1}{z}$, $\frac{1}{z}$, z^3 , and $z^{\frac{1}{4}}$
- 4. Compute/simplify the following and find real and imag parts:

a)
$$\left| (\overline{1+i})(1-i)i \right|$$
 (b) $\frac{i(1+i)^3}{(1-i)^2}$ (c) $(1+i)^6$ (d) $\frac{2+2i}{-\sqrt{3}+i}$

- 5. Find the fourth roots of -1, i.e. $\sqrt[4]{-1}$, and display them graphically. Do the same for the fifth roots of -1 and of (1+i).
- 6. Find the image of the line y = 2x under the map f(z) = iz 1. What is the image of the unit circle under the same map? Make sure to represent your answers algebraically as well as graphically.

- 7. Consider the following questions, involving limits and continuity of complex functions. Remember that limits can be taken in different directions, and for complicated limits there is l'Hospital's rule.
 - a) If $f(z) = \frac{x iy}{x + iy}$, then f is clearly undefined at z = 0. Can you define f(0) in such a way that the new function is continuous at every point in the complex plane?
 - **b)** Say $f(z) = \frac{z^9 + z 2i}{z^{15} + i}$ Can you define f(i) in such a way that the new function is continuous at every point in the complex plane?
 - **c)** Find $\lim_{z \to 1} \frac{1+z^6}{1+z^{10}}$, $\lim_{z \to i} \frac{1+z^6}{1-z^{10}}$, and $\lim_{z \to i} \frac{1+z^6}{1+z^{10}}$
- 8. Consider the following questions about analytic functions.
 - a) If $f(z) = \frac{1}{(z^2 + 1)^2}$ then determine where, if at all, the function is analytic.

If it is analytic, find the complex derivative of f.

- **b)** If $f(z) = x^3 3xy^2 + i(3x^2y y^3)$ then determine where, if at all, the function is analytic. If it is analytic, find the complex derivative of f.
- 9. Decide which of the following functions are analytic, and in which domain they are analytic. If a function is analytic, find its complex derivative:

(a)
$$f(z) = \frac{e^z + 1}{e^z - 1}$$
 (b) $f(z) = x^3 + 3ix^2y - 3xy^2 + x - iy^3 + iy$

- 10. Consider the function $u(x, y) = e^x \sin(y)$. Is it harmonic? If so, find its harmonic conjugate. Do the same for (a) $u(x, y) = x^3 2xy + xy^3$ (b) $u(x, y) = e^y \cos(x)$
- 11. Please find the following numerical answers:

(a)
$$e^{2+2i}$$
, (b) $\cos(\pi + i)$, (c) $\sin\left(i - \frac{\pi}{2}\right)$

14 Solve the following equations for z.

(a)
$$z^4 + 1 = 0$$
, (b) $|e^{2z}| = 3$, (c) $\sin(z) = 3i$, (d) $e^{4z} = 1$, (e) $\cos(z) = i\sin(z)$

- 15 Use the definition of derivative to show that the functions f(z) = Re(z) is nowhere differentiable. Use the CR equations to show that the function $f(z) = \overline{z}$ is nowhere differentiable. Show that if v is the harmonic conjugate of u, then the product u v is harmonic.
- 16 Show that $|e^z| \le 1$ if $Re(z) \le 0$

- 17 State De Moivre's formula. Then use it to prove the trig identity sin(2x) = 2sin(x)cos(x)
- 18 Show that the function e^{iz} is periodic with period 2π
- 19 Show that the function sin(z) is unbounded
- 20 Show that the function $f(z) = z\overline{z} + z + \overline{z} + 2x$ can not be an analytic function.
- 21 Prove that $\sin^2(z) + \cos^2(z) = 1$ (Hint: take the derivative of $f(z) = \sin^2(z) + \cos^2(z)$)
- 22 Prove the following theorem: If f(z) is an analytic function with values that are always imaginary, then the function must be constant.
- 23 Prove the following theorem: if is a harmonic function in an open set U (i.e. h is twice continuously differentiable and $\frac{\partial^2}{\partial x^2}h + \frac{\partial^2}{\partial y^2}h = 0$ in the open set U), then the complex function $f(z) = \frac{\partial}{\partial x}h(x,y) i\frac{\partial}{\partial y}h(x,y)$ is an analytic function in U.
- 24 Find complex parametric functions representing the following paths: (a) a straight line from -i to i, (b) the right half of a circle from -i to i, (c) a straight line from -1 2i to 3 + 2i (d) a circle centered at 1+i of radius 2 d
- 25 Evaluate
 - a. z'(t) for $z(t) = \cos(2t) + i\sin(2t)$

b.
$$\int_{0}^{\pi} z(t)dt$$
 for $z(t) = (5+4i)e^{3it}$

- 26 Evaluate
 - a. $\int_{\gamma} iz^2 + 3dz$ where γ is a line segment from -1-i to 1+i
 - b. $\int_{\gamma} \frac{1}{\overline{z}} dz$ where γ is a circle radius 2 centered at the origin