Complex Analysis Exam 2
This is a take-home exam. You may use the book or your notes as you wish to complete the problems, but you must complete each problem on your own. The completed exam is due on Monday, April 28 – no exceptions!

1.
Perform the following integrations along the indicated contours. You can use any method you like.
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, where C is the unit circle 
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b) 
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, where C is the square with corners at 1, i, -1, and –i.
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,  where C is the circle 
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2.
Find the Taylor series for each given function centered at the point 

. Specify the radius of convergence for each series.

a)


, 


b)


, 


3.
Find a Laurent series for the given function centered at the given point 

 that converges in the specified domain.

a)


, 

, convergent in domain including 
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4.
Consider the function  

 If you were to find the Laurent series centered at 
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5.
Each of the following functions has an isolated singularity at the given point. Classify that singularity as removable, pole, or essential. If it is a pole, find its order.
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c)

[image: image19.wmf]z

e

z

h

z

1

)

(

-

=

, 
[image: image20.wmf]0

0

=

z


6.
Suppose 
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 has a simple pole (i.e. a pole of order 1) at 
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7.
Prove that if 
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