Linear Vector Space

Kristen Zybura

February 4, 2004

Contents

1 Linear Vector Space Definition 1
2 Example 1
3 Linear Combination 2
4 Example of a linear combination 2
5 Linear Dependence 2

1 Linear Vector Space Definition

Let V be a set on which two operations, addition and scalar multiplication, have been defined. If u and v are in V, the sum of u and v is denoted by $u+v$, and if c is a scalar, the scalar multiple of u by c is denoted by $c \mathbf{u}$. If the following axioms hold for all \mathbf{u}, \mathbf{v}, and \mathbf{w} in V and for all scalars c and d, then V is called a vector space and its elements are called vectors.

10 Axioms of a Vector Space

1. $\mathbf{u}+\mathbf{v}$ is in V (closure under addition)
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ (commutativity)
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ (associativity)
4. There exists an element $\mathbf{0}$ in V, called a zero vector, such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each \mathbf{u} in V, there is an element $-\mathbf{u}$ in V such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. $c \mathbf{u}$ is in V (closure under scalar multiplication)
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$ (distributivity)
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$ (distributivity)
9. $c(d \mathbf{u})=(c d) \mathbf{u}$
10. $\mathbf{1 u}=\mathbf{u}$

2 Example

Determine whether the given set is a vector space:
Let V be the set of all positive real numbers x with $x+x^{\prime}=x x^{\prime}$, and $k x=x^{k}$

1. If x and y are positive reals, so is $x+y=x y$ (closure under addition)
2. $x+y=x y=y x=y+x$ (commutativity)
3. $x+(y+z)=x(y z)=(x y) z=(x+y)+z$ (associativity)
4. $1+x=1 x=x=x 1=x+1$ for all positive reals x (zero vector)
5. $x+\left(\frac{1}{x}\right)=x\left(\frac{1}{x}\right)=1=\mathbf{0}=1=\left(\frac{1}{x}\right) x=\left(\frac{1}{x}\right)+x c \mathbf{u}$ is in V (closure under scalar multiplication)
6. If k is real and x is a positive real, then $k x=x^{k}$ is again a positive real.
7. $k(x+y)=(x y)^{k}=x^{k} y^{k}=k x+k y$ (distributivity)
8. $(c+d) x=x^{c+d}=x^{c} x^{d}=c x+d x$ (distributivity)
9. $c(d x)=(d x)^{c}=\left(x^{d}\right)^{c}=x^{d c}=x^{c d}=(c d) x$
10. $1 x=x^{1}=x$

3 Linear Combination

A vector v is a linear combination of vectors $v_{1}, v_{2}, \ldots, v_{k}$ if there are scalar coefficients $c_{1}, c_{2}, \ldots, c_{k}$ such that $c_{1} v_{1}+c_{2} v_{2}+c_{k} v_{k}=v$

4 Example of a linear combination

$u=[1,2,-1] v=[6,4,2]$ in R^{3}.
Show that $\mathbf{w}=[9,2,7]$ is a linear combination of u and v.
$c_{1}[1,2,-1]+c_{2}[6,4,2]=[9,2,7]$
$\left[c_{1}, 2 c_{1},-1 c_{1}\right]+\left[6 c_{2}, 4 c_{2}, 2 c_{2}\right]=[9,2,7]$
$c_{1}+6 c_{2}=9$
$2 c_{1}+4 c_{2}=2$
$-c_{1}+2 c_{2}=7$
$c_{1}=-3$
$c_{2}=2$

5 Linear Dependence

A set of vectors $v_{1}, v_{2}, \ldots v_{k}$ is linearly dependent if there are scalars $c_{1}, c_{2}, \ldots, c_{k}$ at least one of which is not zero, such that $c_{1} v_{1}+c_{2} v_{2}+\ldots c_{k} v_{k}=0$
ie We say that a set of vectors is linearly dependent if one of them can be written as a linear combination of the others.

A set of vectors which is not linearly dependent is linearly independent.

Example:

Let $\mathbf{u}=[1,0,3] \mathbf{v}=[-1,1,-3] \mathbf{w}=[1,2,3]$
$3[1,0,3]+2[-1,1,-3]-[1,2,3]=0$
\mathbf{u}, \mathbf{v}, and \mathbf{w} are linearly dependent, since
$3 \mathbf{u}+2 \mathbf{v}-\mathbf{w}=0$ in fact, all the scalars are nonzero.
Definition: If $S=v_{1}, v_{2}, \ldots, v_{k}$ is a set of vectors in a vector space V, then the set of all linear combinations of $v_{1}, v_{2}, \ldots, v_{k}$ is called the span of $v_{1}, v_{2}, \ldots, v_{k}$.

The Basis Theorem: If a vector space V has a basis with n vectors, then every basis for V has exactly n vectors.

Definition: A vector space V is called finite dimensional if it has a basis consisting of finitely many vectors. The dimension of V, denoted by $\operatorname{dim} V$, is the number of vectors in a basis for V. The dimension of the zero vector space $\mathbf{0}$ is defined to be zero. A vector space that has no finite basis is called infinite-dimensional.

Vector Addition: $u+v=\left[u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{n}+v_{n}\right]$
Scalar Multiplication: $c \mathbf{v}=c\left[v_{1}, v_{2}\right]=\left[c v_{1}, c v_{2}\right]$

