Determinants and Solutions of Linear Systems of Equations

Megan Zwolinski

February 4, 2004

Contents

1	Introduction	1
2	Determinants	1
3	An nxn Matrix	1
4	Properties of Determinants	2
5	Rules for Determinants	2
6	2X2 Matrix	2
7	Example 1	3
8	3x3 Matrix	3
9	Example 2	3
10	Solution of Linear Systems of Equations	3
11	Cramer's Rule	4
12	The Alternative Theorem	4

1 Introduction

In this paper, we will study determinants and solutions of linear systems of equations in some detail. We will learn the basics for each and expand on them.

2 Determinants

A determinant is a mathematical object which is very useful in the analysis and solution of systems of linear equations. Determinants are only defined for square matrices. A square matrix has horizontal and vertical dimensions that are the same (i.e., an nxn matrix). The difference between the form of a matrix and a determinant of a matrix is that a determinant is displayed using straight lines in-place of the square brackets. The determinant is a scalar quantity, which means a one-component quantity. The determinant is most often used to:

- test whether or not a matrix has an inverse
- test for linear dependence of vectors (in certain situations)
- test for existence/uniqueness of solutions of linear systems of equations

3 An nxn Matrix

In an nxn matrix, we follow certain rules for the appearance of the matrix. We let v_i symbolize the i^{th} row. $(a_{i1}, a_{i2}, ..., a_{in})$. If this row were to be multiplied by α , the the row would appear to be $(\alpha a_{i1}, \alpha a_{i2}, ..., \alpha a_{in})$. Also, if two rows were added, the i^{th} row and the j^{th} column, we would have $(a_{i1} + a_{j1}, a_{i2} + a_{j2}, ..., a_{in} + a_{jn})$. A unit matrix appears with the following rows: (1,0,0,...,0), (0,1,0,...,0), ..., (0,0,0,...,1). Also, the letters $e_1, ..., e_n$ describe a unit row.

In an nxn matrix there are a few forms in which a determinant is recognized. First of all the determinant symbolizes the function of the n^2 variables $a_{ij}(i, j = 1, 2, ..., n)$. The determinant for this function can be written as:

$$D = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = |a_{ij}| = D(v_1, v_2, \dots v_n)$$

4 **Properties of Determinants**

- 1. $D(v_1, v_2, ..., v_i, ..., v_n) = D(v_1, v_2, ..., v_i + v_j, ..., v_n)$ $(i \neq j)$ (Invariance)
- 2. $D(v_1, v_2, ..., \alpha v_i, ..., v_n) = \alpha D(v_1, v_2, ..., v_i + v_j, ..., v_n)$ (Homogeneity)
- 3. $D(e_1, e_2, ..., e_n) = 1$ (Normalization)

5 Rules for Determinants

Determinants are either written as |A| or detA. Now say that we delete the i^{th} row and the j^{th} column a (n-1)x(n-1) submatrix A_{ij} is formed. The

determinant of this submatrix is the *minor* element of a_{ij} . The *cofactor* of a_{ij} is $(-1)^{i+j}|A_{ij}|$. We also write the cofactor as A_{ij}^* . The following are some rules for determinants.

a. $|A| = |A'|, A' = transpose of A = (a_j i))$

b. If two rows (or columns) of A are interchanged, producing a matrix A_1 , then |A| = -|A|

c. If two rows (or columns) of A are identical, then -A = 0

d. If a row (or column), v, of A is replaced by kv producing a matrix A_1 , then |A|=k|A|.

e. If a scalar multiple kv, of the *i*th row (or column) is added to the *j*th row (or column) v_j , $(i \neq j)$ and the matrix A_1 results, then $|A| = |A_1|$.

f. A determinant may be evaluated in terms of cofactors: |A| =

$$\sum_{i=1}^{n} a_{ij} A_{ij}^* \ 1 \le j \le n$$
$$= \sum_{i=1}^{n} a_{ij} A_{ij}^* \ 1 \le i \le n$$

6 2X2 Matrix

The most basic determinant is found using a $2x^2$ matrix in the form

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

The determinant of a $2x^2$ matrix is found using the following formula:

$$|A| = det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

7 Example 1

2x2 Matrix Using the matrix

$$A = \left[\begin{array}{cc} 4 & 5 \\ 2 & 3 \end{array} \right]$$

the determinant would be

$$|A| = det(A) = \begin{vmatrix} 4 & 5 \\ 2 & 3 \end{vmatrix} = 4 * 3 - 5 * 2 = 2$$

8 3x3 Matrix

The next kind of matrix studied is the 3x3 matrix. The form of this matrix is

$$B = \left[\begin{array}{rrr} a & b & c \\ d & e & f \\ g & h & i \end{array} \right]$$

The determinant of a 3x3 matrix is found using the following formula:

$$|B| = det(B) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

9 Example 2

3x3 Matrix Using the matrix

$$B = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 0 & 2 & 4 \end{bmatrix}$$

the determinant would be

$$|B| = det(B) = \begin{vmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 0 & 2 & 4 \end{vmatrix} = 1 \begin{vmatrix} 4 & 6 \\ 2 & 4 \end{vmatrix} - 3 \begin{vmatrix} 2 & 6 \\ 0 & 4 \end{vmatrix} + 5 \begin{vmatrix} 2 & 4 \\ 0 & 2 \end{vmatrix}$$

10 Solution of Linear Systems of Equations

Consider the system of n linear equations in n unknowns $x_1, x_2, ..., x_n$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, 2, ..., n)$$

11 Cramer's Rule

The above formula is Cramer's Rule. It states that if $|A| = |a_{ij}| \neq 0$, then

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \ (i=1,2,...,n)$$

possesses a unique solution given by

$$x_r = \frac{\sum_{i=1}^n A_{ir}^* b_i}{|A|} \ (r = 1, 2, ..., n)$$

Cramer's rule is used to solve a set of n linear equations in n unknowns. It uses determinants to obtain the solution.

12 The Alternative Theorem

This formula that results from Cramer's Rule is the Alternative Theorem. Also described as the homogeneous system

$$\sum_{j=1}^{n} a_{ij} x_j = 0 \ (i = 1, 2, ..., n)$$

possesses a non-trivial solution (i.e., a solution other than $x_1 = x_2 = ... = x_n = 0$) if and only if |A|=0. If for a fixed $A = (a_{ij})$ there are solutions to the non-homogeneous system

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, 2, ..., n)$$

for every selection of the quantities b_i , then $|A| \neq 0$ and the homogeneous system had only the trivial solution.