Determinants and Solutions of Linear Systems of Equations

Megan Zwolinski

February 4, 2004

Contents

1 Introduction 1
2 Determinants 1
3 An $n x n$ Matrix 1
4 Properties of Determinants 2
5 Rules for Determinants 2
6 2X2 Matrix 2
7 Example 1 3
8 3x3 Matrix 3
9 Example 2 3
10 Solution of Linear Systems of Equations 3
11 Cramer's Rule 4
12 The Alternative Theorem 4

1 Introduction

In this paper, we will study determinants and solutions of linear systems of equations in some detail. We will learn the basics for each and expand on them.

2 Determinants

A determinant is a mathematical object which is very useful in the analysis and solution of systems of linear equations. Determinants are only defined for square matrices. A square matrix has horizontal and vertical dimensions that are the same (i.e., an $n x n$ matrix). The difference between the form of a matrix and a determinant of a matrix is that a determinant is displayed using straight lines in-place of the square brackets. The determinant is a scalar quantity, which means a one-component quantity. The determinant is most often used to:

- test whether or not a matrix has an inverse
- test for linear dependence of vectors (in certain situations)
- test for existence/uniqueness of solutions of linear systems of equations

3 An nxn Matrix

In an $n x n$ matrix, we follow certain rules for the appearance of the matrix. We let v_{i} symbolize the $i^{\text {th }}$ row. $\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$. If this row were to be multiplied by α, the the row would appear to be $\left(\alpha a_{i 1}, \alpha a_{i 2}, \ldots, \alpha a_{i n}\right)$. Also, if two rows were added, the $i^{t h}$ row and the $j^{t h}$ column, we would have $\left(a_{i 1}+\right.$ $\left.a_{j 1}, a_{i 2}+a_{j 2}, \ldots, a_{i n}+a_{j n}\right)$. A unit matrix appears with the following rows: $(1,0,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0,0,0, \ldots, 1)$. Also, the letters e_{1}, \ldots, e_{n} describe a unit row.

In an $n x n$ matrix there are a few forms in which a determinant is recognized. First of all the determinant symbolizes the function of the n^{2} variables $a_{i j}(i, j=$ $1,2, \ldots, n)$. The determinant for this function can be written as:

$$
D=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|=\left|a_{i j}\right|=D\left(v_{1}, v_{2}, \ldots v_{n}\right)
$$

4 Properties of Determinants

1. $D\left(v_{1}, v_{2}, \ldots, v_{i}, \ldots, v_{n}\right)=D\left(v_{1}, v_{2}, \ldots, v_{i}+v_{j}, \ldots v_{n}\right)(i \neq j)$ (Invariance)
2. $D\left(v_{1}, v_{2}, \ldots, \alpha v_{i}, \ldots, v_{n}\right)=\alpha D\left(v_{1}, v_{2}, \ldots, v_{i}+v_{j}, \ldots v_{n}\right)$ (Homogeneity)
3. $D\left(e_{1}, e_{2}, \ldots, e_{n}\right)=1$ (Normalization)

5 Rules for Determinants

Determinants are either written as $|A|$ or $\operatorname{det} A$. Now say that we delete the $i^{\text {th }}$ row and the $j^{\text {th }}$ column a $(n-1) x(n-1)$ submatrix $A_{i j}$ is formed. The
determinant of this submatrix is the minor element of $a_{i j}$. The cofactor of $a_{i j}$ is $(-1)^{i+j}\left|A_{i j}\right|$. We also write the cofactor as $A_{i j}^{*}$. The following are some rules for determinants.
a. $|A|=\left|A^{\prime}\right|, A^{\prime}=$ transposeof $\left.A=\left(a_{j} i\right)\right)$
b. If two rows (or columns) of A are interchanged, producing a matrix A_{1}, then $|A|=-|A|$
c. If two rows (or columns) of A are identical, then - $\mathrm{A}-=0$
d. If a row (or column), v, of A is replaced by $k v$ producing a matrix A_{1}, then $|A|=k|A|$.
e. If a scalar multiple $k v$, of the $i t h$ row (or column) is added to the $j t h$ row (or column) $v_{j},(i \neq j)$ and the matrix A_{1} results, then $|A|=\left|A_{1}\right|$.
f. A determinant may be evaluated in terms of cofactors: $|A|=$

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i j} A_{i j}^{*} 1 \leq j \leq n \\
= & \sum_{i=1}^{n} a_{i j} A_{i j}^{*} 1 \leq i \leq n
\end{aligned}
$$

6 2X2 Matrix

The most basic determinant is found using a $2 x 2$ matrix in the form

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

The determinant of a $2 x 2$ matrix is found using the following formula:

$$
|A|=\operatorname{det}(A)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

7 Example 1

$2 x 2$ Matrix Using the matrix

$$
A=\left[\begin{array}{ll}
4 & 5 \\
2 & 3
\end{array}\right]
$$

the determinant would be

$$
|A|=\operatorname{det}(A)=\left|\begin{array}{ll}
4 & 5 \\
2 & 3
\end{array}\right|=4 * 3-5 * 2=2
$$

8 3x3 Matrix

The next kind of matrix studied is the $3 x 3$ matrix. The form of this matrix is

$$
B=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

The determinant of a $3 x 3$ matrix is found using the following formula:

$$
|B|=\operatorname{det}(B)=\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a\left|\begin{array}{cc}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{cc}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{cc}
d & e \\
g & h
\end{array}\right|
$$

9 Example 2

$3 x 3$ Matrix Using the matrix

$$
B=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6 \\
0 & 2 & 4
\end{array}\right]
$$

the determinant would be

$$
|B|=\operatorname{det}(B)=\left|\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6 \\
0 & 2 & 4
\end{array}\right|=1\left|\begin{array}{ll}
4 & 6 \\
2 & 4
\end{array}\right|-3\left|\begin{array}{ll}
2 & 6 \\
0 & 4
\end{array}\right|+5\left|\begin{array}{ll}
2 & 4 \\
0 & 2
\end{array}\right|
$$

10 Solution of Linear Systems of Equations

Consider the system of n linear equations in n unknowns $x_{1}, x_{2}, \ldots, x_{n}$

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}(i=1,2, \ldots, n)
$$

11 Cramer's Rule

The above formula is Cramer's Rule. It states that if $|A|=\left|a_{i j}\right| \neq 0$, then

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}(i=1,2, \ldots, n)
$$

possesses a unique solution given by

$$
x_{r}=\frac{\sum_{i=1}^{n} A_{i r}^{*} b_{i}}{|A|}(r=1,2, \ldots, n)
$$

Cramer's rule is used to solve a set of n linear equations in n unknowns. It uses determinants to obtain the solution.

12 The Alternative Theorem

This formula that results from Cramer's Rule is the Alternative Theorem. Also described as the homogeneous system

$$
\sum_{j=1}^{n} a_{i j} x_{j}=0(i=1,2, \ldots, n)
$$

possesses a non-trivial solution (i.e., a solution other than $x_{1}=x_{2}=\ldots=$ $x_{n}=0$) if and only if $|A|=0$. If for a fixed $A=\left(a_{i j}\right)$ there are solutions to the non-homogeneous system

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}(i=1,2, \ldots, n)
$$

for every selection of the quantities b_{i}, then $|A| \neq 0$ and the homogeneous system had only the trivial solution.

