Differentiable Functions

Ericka L. Sunnerville

February 2004

Abstract

In this paper I will briefly discuss one of the two fundamental operations of calculus-differentiation.

Contents

1 Introduction 1
2 Definition 1
3 Calculating the Derivative 1
4 Differentiability and Continuity 2
5 A few Theorems for Differentiable Functions 3
6 Taylor's Theorem 5

1 Introduction

In this paper I will give a definition of the derivative of a function, state some basic rules for differentiation, and give some examples of functions that are and are not differentiable

2 Definition

The derivative of f at x is give by

$$
f^{\prime}(x)=\lim _{\Delta x \mapsto 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

provided the limit exists.
Note: The process of finding the derivative of a function is called differentiation. A function is differentiable at x if its derivative exists at s and differentiable on an open interval (a, b) if it is differentiable at every point in the interval.

Other notations for the derivative of f include: $D_{y}[f(x)], \frac{d y}{d x}$, or y^{\prime}. The last two are used when the rule for f is written in the form $y=f(x)$.

3 Calculating the Derivative

The calculation of the derivative of f is facilitated using the following four-step process.

1. Compute $f(x+\Delta x)$.
2. Form the difference $f(x+\Delta x)-f(x)$.
3. Form the quotient $\frac{f(x+\Delta x)-f(x)}{\Delta x}$.
4. Compute $f^{\prime}(x)=\lim _{\Delta x \mapsto 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$.

Example 3.1 Let $f(x)=x^{2}$. Compute $f^{\prime}(x)$.

$$
\begin{aligned}
f(x+\Delta x) & =(x+\Delta x)^{2}=x^{2}+2 x \Delta x+\Delta x^{2} \\
f(x+\Delta x)-f(x) & =x^{2}+2 x \Delta x+\Delta x^{2}-x^{2}=2 x \Delta x+\Delta x^{2}=\Delta x(2 x+\Delta x) \\
\frac{f(x+\Delta x)-f(x)}{\Delta x} & =\frac{\Delta x(2 x+\Delta x)}{\Delta x}=2 x+\Delta x \\
f^{\prime}(x) & =\lim _{\Delta x \mapsto 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \mapsto 0}(2 x+\Delta x)=2 x
\end{aligned}
$$

4 Differentiability and Continuity

In practical applications, you encounter functions that fail to be differentiblethat is, do not have a derivative at certain values in the domain of the function f. It can be shown that a continuous function f fails to be differentiable at a point when the graph of f makes and abrupt change of direction at that point. The following alternative limit form of the derivative is useful un investigating the relationship between differentiability and continuity. The derivative of f at c is

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

provided this limit exists. Note that the limit in this alternative form requires that the one-sided limits

$$
\lim _{x \mapsto c^{+}} \frac{f(x)-f(c)}{x-c} \text { and } \lim _{x \mapsto c^{-}} \frac{(f(x)-f(c)}{x-c}
$$

exists and are equal. These one-sided limits are called the derivatives from the left and from the right, respectively.

Example 4.1 The function

$$
f(x)=|x-2|
$$

is continuous at $x=2$. However, the one-sided limits
$\lim \frac{f(x)-f(2)}{x-2}=\lim \frac{|x-2|-0}{x-2}=-1 \quad$ and $\quad \lim \frac{f(x)-f(2)}{x-2}=\lim \frac{|x-2|-0}{x-2}=1$
are not equal. Therefore, f is not differentiable at $x=2$.
Theorem 4.1 Differentiability Implies Coninuity
If f is differentiable at $x=c$, then f is continuous at $x=c$.
Proof: You can prove that f is continuous at $x=c$ by showing that $f(x)$ approaches $f(c)$ as $x \rightarrow c$. To do this, use the differentiability of f at $x \rightarrow c$ and consider the following limit:

$$
\begin{aligned}
\lim [f(x)-f(c)] & =\lim \left[(x-c)\left(\frac{f(x)-f(c)}{x-c}\right)\right] \\
& =[\lim (x-c)]\left[\lim \frac{f(x)-f(c)}{x-c}\right] \\
& =(0)\left[f^{\prime}(c)\right] \\
& =0
\end{aligned}
$$

Because the difference $f(x)-f(c)$ approaches zero as $x \rightarrow c$, you can conclude that $\lim f(x)=f(c)$. Therefore, f is continuous at $x=c$.
q.e.d.

Note: If a function is differentiable at $x=c$, then it is continuous at $x=c$. Hence, differentiability implies continuity. It is possible for a function to be continuous at $x=c$ and not be differentiable at $x=c$. Hence, continuity does not imply differentiability.

5 A few Theorems for Differentiable Functions

There are many theorems related to differentiable functions. We already saw, for example, that differentiablity implies continuity. Other important theorems are Rolle's Theorem and its generalized form.

Theorem 5.1 Rolle's Theorem Let f be continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). If $f(a)=f(b)$ then there is at least one number c in (a, b) such that $f^{\prime}(c)=0$.
Example 5.1 Suppose $f(x)=x^{4}-2 x^{2}$ and we consider the interval $[-2,2]$. Does Rolle's Theorem apply, and if so find the points guaranteed to exist by the theorem.

Figure 1: Graph of $f(x)=x^{4}-2 x^{2}$

To begin, note that f is continuous on the interval $[-2,2]$ and differentiable on the interval $(-2,2)$. Moreover, because $f(-2)=8=f(2)$ you can conclude that there exists at least one c in $(-2,2)$ such that $f^{\prime}(c)=0$. Setting the derivative equal to 0 produces

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3}-4 x=0 \\
4 x\left(x^{2}-1\right)=0 \\
x=0,1,-1
\end{gathered}
$$

Theorem 5.2 Generalized Rolle's Theorem

- f once differentiable, $f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow f^{\prime}\left(c_{1}\right)=0$ for some c_{1}
- f twice differentiable, $f\left(a_{1}\right)=f\left(a_{2}\right)=f\left(a_{3}\right)$

$$
\begin{aligned}
& -\Rightarrow f^{\prime}\left(c_{1}\right)=0 \text { and } f^{\prime}\left(c_{2}\right)=0 \\
& -\Rightarrow f^{\prime \prime}\left(d_{1}\right)=0 \text { for some } d_{1}
\end{aligned}
$$

- f thrice differentiable, $f\left(a_{1}\right)=f\left(a_{2}\right)=f\left(a_{3}\right)=f\left(a_{4}\right)$

$$
\begin{aligned}
& -\Rightarrow f^{\prime}\left(c_{1}\right)=0, f^{\prime}\left(c_{2}\right)=0, \text { and } f^{\prime}\left(c_{3}\right)=0 \\
& -\Rightarrow f^{\prime \prime}\left(d_{1}\right)=0 \text { and } f^{\prime \prime}\left(d_{2}\right)=0 \\
& -\Rightarrow f^{\prime \prime \prime}\left(e_{1}\right)=0 \text { for some } e_{1}
\end{aligned}
$$

Example 5.2 let $f(x)=x^{4}-2 x^{2}$ on $[-1.3,1.3]$ then by the Generalized Rolle's Theorem, $f(1.3)=-0.5239=f(-1.3)$.

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3}-4 x=0 \\
4 x\left(x^{2}-1\right)=0 \\
x=0,1,-1
\end{gathered}
$$

Thus there are three points where $f^{\prime}(x)=0$.

$$
\begin{gathered}
f^{\prime \prime}(x)=12 x^{2}-4=0 \\
12 x^{2}=4 \\
x=\frac{\sqrt{3}}{3},-\frac{\sqrt{3}}{3}
\end{gathered}
$$

Thus there are two points where $f^{\prime \prime}(x)=0$

$$
\begin{gathered}
f^{\prime \prime \prime}(x)=24 x=0 \\
x=0
\end{gathered}
$$

Thus there is one point where $f^{\prime \prime \prime}(x)=0$

Now we saw that functions that are differentiable more than once could be useful, we define new classes of functions as follows.

Definition 5.1 The Space of C^{n} Functions If $f(x)$ is n times differentiable on $[a, b]$ and if $f^{n}(x)$ is itself continuous on $[a, b]$, we shall write $f(x) \in C^{n}[a, b]$.

Note: $C^{n}[a, b]$ is a linear space of functions.
Example 5.3 Here is a function that is continuous but not differentiable (i.e. C^{0}):

Let $f(x)=|x|$ and we consider the interval $[-1,1]$. The function is certainly continuous, but not differentiable at $x=0$.

Example 5.4 Here is a function that is differentiable but f^{\prime} is not continuous (i.e. again C^{0}):

$$
f(x)=\left\{\begin{array}{cl}
x^{2} \sin \left(\frac{1}{x}\right) & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

Example 5.5 The function $f(x)=x^{\frac{4}{3}}$ is a function that is in C^{1} but not C^{2}.

$$
\begin{gathered}
f(x)=x^{\frac{4}{3}}, x \in \Re \\
f^{\prime}(x)=\frac{4}{3} x^{\frac{1}{3}} \Rightarrow f \in C^{\prime} \\
f^{\prime \prime}(x)=\frac{4}{3} \cdot \frac{1}{3} x^{\frac{-2}{3}} \\
f^{\prime \prime}(x)=\frac{4}{9} \cdot \frac{1}{x^{\frac{2}{3}}} .
\end{gathered}
$$

The function is not defined at $x=0$, and thus not in C^{2}.

6 Taylor's Theorem

Now our basic question is this: if a function f is n-times differentiable, i.e. $f \in C^{n}$, then what does the function have to do with its derivatives, if anything? Or in other words, can I use the derivatives to approximate the function. The answer is yes, and Taylor's theorem helps us do so.

Theorem 6.1 Taylor's Thereom Let $f(x) \in C^{n+1}[a, b]$ and let $x_{0} \in[a, b]$, then
$f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\frac{1}{n!} \int_{t=x_{0}}^{t=x} f^{(n+1)}(t)(x-t)^{n} d t$.

Theorem 6.2 Taylor's Theorem with Exact Remainder Let $f(x) \in C^{n}[a, b]$ and let $f^{(n+1)}(x)$ exists in (a, b). Then there exists $a \zeta$ with $a<\zeta<b$ such that
$f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{f^{\prime \prime}(a)}{2!}(b-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(b-a)^{n}+\frac{f^{(n+1)} \zeta}{(n+1)!}(b-a)^{n+1}$.
Example 6.1 Let $f(x)=e^{x} \in C^{5}$ for $x=2$, on $[-1,1] . f(x)$ is differentiable infinitely many times and since $f^{(n)}(x)=e^{x}$ for all $n, f^{(n)} x_{0}=1$. The Taylor expansion is given by
$e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{e^{\zeta_{5}}}{720} x^{6}=7.26667+$ some arbitrary number
From Taylor's Theorem, it is now easy to obtain a polynomial approximation by deleting the remainder term from the formula. Now we have

$$
e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}=7.26667
$$

$e^{2}=8.26667$. Taylor's theorem gives a close approximation to the value of a function which we can not easily compute.

