Differentiable Functions

Ericka L. Sunnerville

February 2004

Abstract

In this paper I will briefly discuss one of the two fundamental operations of calculus-differentiation.

Contents

1	Introduction	1
2	Definition	1
3	Calculating the Derivative	1
4	Differentiability and Continuity	2
5	A few Theorems for Differentiable Functions	3
6	Taylor's Theorem	5

1 Introduction

In this paper I will give a definition of the derivative of a function, state some basic rules for differentiation, and give some examples of functions that are and are not differentiable

2 Definition

The **derivative** of f at x is give by

$$f'(x) = \lim_{\Delta x \mapsto 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

provided the limit exists.

Note: The process of finding the derivative of a function is called *differentiation*. A function is *differentiable* at x if its derivative exists at s and *differentiable* on an open interval (a, b) if it is differentiable at every point in the interval.

Other notations for the derivative of f include: $D_y[f(x)]$, $\frac{dy}{dx}$, or y'. The last two are used when the rule for f is written in the form y = f(x).

3 Calculating the Derivative

The calculation of the derivative of f is facilitated using the following four-step process.

- 1. Compute $f(x + \Delta x)$.
- 2. Form the difference $f(x + \Delta x) f(x)$.
- 3. Form the quotient $\frac{f(x+\Delta x)-f(x)}{\Delta x}$.
- 4. Compute $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) f(x)}{\Delta x}$.

Example 3.1 Let $f(x) = x^2$. Compute f'(x).

$$f(x + \Delta x) = (x + \Delta x)^2 = x^2 + 2x\Delta x + \Delta x^2$$

$$f(x + \Delta x) - f(x) = x^2 + 2x\Delta x + \Delta x^2 - x^2 = 2x\Delta x + \Delta x^2 = \Delta x(2x + \Delta x)$$

$$\frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{\Delta x(2x + \Delta x)}{\Delta x} = 2x + \Delta x$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} (2x + \Delta x) = 2x$$

4 Differentiability and Continuity

In practical applications, you encounter functions that fail to be differentible-that is, do not have a derivative at certain values in the domain of the function f. It can be shown that a continuous function f fails to be differentiable at a point when the graph of f makes and abrupt change of direction at that point. The following alternative limit form of the derivative is useful un investigating the relationship between differentiability and continuity. The derivative of f at c is

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

provided this limit exists. Note that the limit in this alternative form requires that the one-sided limits

$$\lim_{x\mapsto c^+}\frac{f(x)-f(c)}{x-c} \text{ and } \lim_{x\mapsto c^-}\frac{(f(x)-f(c)}{x-c}$$

exists and are equal. These one-sided limits are called the **derivatives from** the left and from the right, respectively.

Example 4.1 The function

$$f(x) = |x - 2|$$

is continuous at x = 2. However, the one-sided limits

$$\lim \frac{f(x) - f(2)}{x - 2} = \lim \frac{|x - 2| - 0}{x - 2} = -1 \quad and \quad \lim \frac{f(x) - f(2)}{x - 2} = \lim \frac{|x - 2| - 0}{x - 2} = 1$$

are not equal. Therefore, f is not differentiable at x = 2.

Theorem 4.1 Differentiability Implies Coninuity If f is differentiable at x = c, then f is continuous at x = c.

Proof: You can prove that f is continuous at x = c by showing that f(x) approaches f(c) as $x \to c$. To do this, use the differentiability of f at $x \to c$ and consider the following limit:

$$\lim[f(x) - f(c)] = \lim[(x - c)(\frac{f(x) - f(c)}{x - c})]$$

$$= [\lim(x - c)][\lim\frac{f(x) - f(c)}{x - c}]$$

$$= (0)[f'(c)]$$

$$= 0$$

Because the difference f(x)-f(c) approaches zero as $x \to c$, you can conclude that $\lim_{x \to c} f(x) = f(c)$. Therefore, f is continuous at x = c.

q.e.d.

Note: If a function is differentiable at x = c, then it is continuous at x = c. Hence, differentiability implies continuity. It is possible for a function to be continuous at x = c and *not* be differentiable at x = c. Hence, continuity does not imply differentiability.

5 A few Theorems for Differentiable Functions

There are many theorems related to differentiable functions. We already saw, for example, that differentiablity implies continuity. Other important theorems are *Rolle's Theorem* and its generalized form.

Theorem 5.1 Rolle's Theorem Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If f(a) = f(b) then there is at least one number c in (a, b) such that f'(c) = 0.

Example 5.1 Suppose $f(x) = x^4 - 2x^2$ and we consider the interval [-2, 2]. Does Rolle's Theorem apply, and if so find the points guaranteed to exist by the theorem.

Figure 1: Graph of
$$f(x) = x^4 - 2x^2$$

To begin, note that f is continuous on the interval [-2, 2] and differentiable on the interval (-2, 2). Moreover, because f(-2) = 8 = f(2) you can conclude that there exists at least one c in (-2, 2) such that f'(c) = 0. Setting the derivative equal to 0 produces

$$f'(x) = 4x^3 - 4x = 0$$
$$4x(x^2 - 1) = 0$$
$$x = 0, 1, -1$$

Theorem 5.2 Generalized Rolle's Theorem

- f once differentiable, $f(a_1) = f(a_2) \Rightarrow f'(c_1) = 0$ for some c_1
- f twice differentiable, $f(a_1) = f(a_2) = f(a_3)$

$$- \Rightarrow f'(c_1) = 0 \text{ and } f'(c_2) = 0$$

$$- \Rightarrow f''(d_1) = 0 \text{ for some } d_1$$

• f thrice differentiable, $f(a_1) = f(a_2) = f(a_3) = f(a_4)$

$$- \Rightarrow f'(c_1) = 0$$
, $f'(c_2) = 0$, and $f'(c_3) = 0$
 $- \Rightarrow f''(d_1) = 0$ and $f''(d_2) = 0$

$$- \Rightarrow f'''(e_1) = 0 \text{ for some } e_1$$

Example 5.2 let $f(x) = x^4 - 2x^2$ on [-1.3, 1.3] then by the Generalized Rolle's Theorem, f(1.3) = -0.5239 = f(-1.3).

$$f'(x) = 4x^3 - 4x = 0$$
$$4x(x^2 - 1) = 0$$

$$x = 0, 1, -1$$

Thus there are three points where f'(x) = 0.

$$f''(x) = 12x^2 - 4 = 0$$

$$12x^2=4$$

$$x = \frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}$$

Thus there are two points where f''(x) = 0

$$f'''(x) = 24x = 0$$

$$x = 0$$

Thus there is one point where f'''(x) = 0

Now we saw that functions that are differentiable more than once could be useful, we define new classes of functions as follows.

Definition 5.1 The Space of C^n Functions If f(x) is n times differentiable on [a,b] and if $f^n(x)$ is itself continuous on [a,b], we shall write $f(x) \in C^n[a,b]$.

Note: $C^n[a,b]$ is a linear space of functions.

Example 5.3 Here is a function that is continuous but not differentiable (i.e. C^0):

Let f(x) = |x| and we consider the interval [-1, 1]. The function is certainly continuous, but not differentiable at x = 0.

Example 5.4 Here is a function that is differentiable but f' is not continuous (i.e. again C^0):

$$f(x) = \begin{cases} x^2 sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$$

Example 5.5 The function $f(x) = x^{\frac{4}{3}}$ is a function that is in C^1 but not C^2 .

$$f(x) = x^{\frac{4}{3}}, x \in \Re$$

$$f'(x) = \frac{4}{3}x^{\frac{1}{3}} \Rightarrow f \in C'$$

$$f''(x) = \frac{4}{3} \cdot \frac{1}{3} x^{\frac{-2}{3}}$$

$$f''(x) = \frac{4}{9} \cdot \frac{1}{x^{\frac{2}{3}}}.$$

The function is not defined at x = 0, and thus not in C^2 .

6 Taylor's Theorem

Now our basic question is this: if a function f is n-times differentiable, i.e. $f \in C^n$, then what does the function have to do with its derivatives, if anything? Or in other words, can I use the derivatives to approximate the function. The answer is yes, and Taylor's theorem helps us do so.

Theorem 6.1 Taylor's Thereom Let $f(x) \in C^{n+1}[a,b]$ and let $x_0 \in [a,b]$, then

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{1}{n!} \int_{t = x_0}^{t = x} f^{(n+1)}(t)(x - t)^n dt.$$

Theorem 6.2 Taylor's Theorem with Exact Remainder Let $f(x) \in C^n[a,b]$ and let $f^{(n+1)}(x)$ exists in (a,b). Then there exists a ζ with $a < \zeta < b$ such that

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(b-a)^n + \frac{f^{(n+1)}\zeta}{(n+1)!}(b-a)^{n+1}.$$

Example 6.1 Let $f(x) = e^x \in C^5$ for x = 2, on [-1,1]. f(x) is differentiable infinitely many times and since $f^{(n)}(x) = e^x$ for all n, $f^{(n)}x_0 = 1$. The Taylor expansion is given by

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5 + \frac{e^{\zeta_5}}{720}x^6 = 7.26667 + some \ arbitrary \ number$$

From Taylor's Theorem, it is now easy to obtain a polynomial approximation by deleting the remainder term from the formula. Now we have

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5 = 7.26667$$

 $e^2 = 8.26667$. Taylor's theorem gives a close approximation to the value of a function which we can not easily compute.