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Abstract

In this paper I will briefly discuss one of the two fundamental opera-
tions of calculus-differentiation.
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1 Introduction

In this paper I will give a definition of the derivative of a function, state some
basic rules for differentiation, and give some examples of functions that are and
are not differentiable

2 Definition

The derivative of f at x is give by

f ′(x) = lim
∆x7→0

f(x + ∆x)− f(x)
∆x

provided the limit exists.
Note: The process of finding the derivative of a function is called differentia-

tion. A function is differentiable at x if its derivative exists at s and differentiable
on an open interval (a, b) if it is differentiable at every point in the interval.
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Other notations for the derivative of f include: Dy[f(x)], dy
dx , or y′. The last

two are used when the rule for f is written in the form y = f(x).

3 Calculating the Derivative

The calculation of the derivative of f is facilitated using the following four-step
process.

1. Compute f(x + ∆x).

2. Form the difference f(x + ∆x)− f(x).

3. Form the quotient f(x+∆x)−f(x)
∆x .

4. Compute f ′(x) = lim∆x7→0
f(x+∆x)−f(x)

∆x .

Example 3.1 Let f(x) = x2. Compute f ′(x).

f(x + ∆x) = (x + ∆x)2 = x2 + 2x∆x + ∆x2

f(x + ∆x)− f(x) = x2 + 2x∆x + ∆x2 − x2 = 2x∆x + ∆x2 = ∆x(2x + ∆x)
f(x + ∆x)− f(x)

∆x
=

∆x(2x + ∆x)
∆x

= 2x + ∆x

f ′(x) = lim
∆x7→0

f(x + ∆x)− f(x)
∆x

= lim
∆x7→0

(2x + ∆x) = 2x

4 Differentiability and Continuity

In practical applications, you encounter functions that fail to be differentible-
that is, do not have a derivative at certain values in the domain of the function
f . It can be shown that a continuous function f fails to be differentiable at a
point when the graph of f makes and abrupt change of direction at that point.
The following alternative limit form of the derivative is useful un investigating
the relationship between differentiability and continuity. The derivative of f at
c is

f ′(c) = lim
x7→c

f(x)− f(c)
x− c

provided this limit exists. Note that the limit in this alternative form requires
that the one-sided limits

lim
x7→c+

f(x)− f(c)
x− c

and lim
x7→c−

(f(x)− f(c)
x− c

exists and are equal. These one-sided limits are called the derivatives from
the left and from the right, respectively.
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Example 4.1 The function

f(x) = |x− 2|

is continuous at x = 2. However, the one-sided limits

lim
f(x)− f(2)

x− 2
= lim

|x− 2| − 0
x− 2

= −1 and lim
f(x)− f(2)

x− 2
= lim

|x− 2| − 0
x− 2

= 1

are not equal. Therefore, f is not differentiable at x = 2.

Theorem 4.1 Differentiability Implies Coninuity
If f is differentiable at x = c, then f is continuous at x = c.

Proof: You can prove that f is continuous at x = c by showing that f(x)
approaches f(c) as x → c. To do this, use the differentiability of f at x → c
and consider the following limit:

lim[f(x)− f(c)] = lim[(x− c)(
f(x)− f(c)

x− c
)]

= [lim(x− c)][lim
f(x)− f(c)

x− c
]

= (0)[f ′(c)]
= 0

Because the difference f(x)−f(c) approaches zero as x → c, you can conclude
that limf(x) = f(c). Therefore, f is continuous at x = c.

q.e.d.

Note: If a function is differentiable at x = c, then it is continuous at x = c.
Hence, differentiability implies continuity. It is possible for a function to be
continuous at x = c and not be differentiable at x = c. Hence, continuity does
not imply differentiability.

5 A few Theorems for Differentiable Functions

There are many theorems related to differentiable functions. We already saw,
for example, that differentiablity implies continuity. Other important theorems
are Rolle’s Theorem and its generalized form.

Theorem 5.1 Rolle’s Theorem Let f be continuous on the closed interval [a, b]
and differentiable on the open interval (a, b). If f(a) = f(b) then there is at
least one number c in (a, b) such that f ′(c) = 0.

Example 5.1 Suppose f(x) = x4 − 2x2 and we consider the interval [−2, 2].
Does Rolle’s Theorem apply, and if so find the points guaranteed to exist by the
theorem.
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Figure 1: Graph of f(x) = x4 − 2x2

To begin, note that f is continuous on the interval [−2, 2] and differentiable
on the interval (−2, 2). Moreover, because f(−2) = 8 = f(2) you can conclude
that there exists at least one c in (−2, 2) such that f ′(c) = 0. Setting the
derivative equal to 0 produces

f ′(x) = 4x3 − 4x = 0

4x(x2 − 1) = 0

x = 0, 1,−1

Theorem 5.2 Generalized Rolle’s Theorem

• f once differentiable, f(a1) = f(a2) ⇒ f ′(c1) = 0 for some c1

• f twice differentiable, f(a1) = f(a2) = f(a3)

– ⇒ f ′(c1) = 0 and f ′(c2) = 0
– ⇒ f ′′(d1) = 0 for some d1

• f thrice differentiable, f(a1) = f(a2) = f(a3) = f(a4)

– ⇒ f ′(c1) = 0 , f ′(c2) = 0, and f ′(c3) = 0
– ⇒ f ′′(d1) = 0 and f ′′(d2) = 0
– ⇒ f ′′′(e1) = 0 for some e1

Example 5.2 let f(x) = x4−2x2 on [−1.3, 1.3] then by the Generalized Rolle’s
Theorem, f(1.3) = −0.5239 = f(−1.3).

f ′(x) = 4x3 − 4x = 0

4x(x2 − 1) = 0

x = 0, 1,−1

Thus there are three points where f ′(x) = 0.

f ′′(x) = 12x2 − 4 = 0

12x2 = 4

x =
√

3
3

,−
√

3
3

Thus there are two points where f ′′(x) = 0

f ′′′(x) = 24x = 0

x = 0

Thus there is one point where f ′′′(x) = 0
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Now we saw that functions that are differentiable more than once could be
useful, we define new classes of functions as follows.

Definition 5.1 The Space of Cn Functions If f(x) is n times differentiable on
[a, b] and if fn(x) is itself continuous on [a, b], we shall write f(x) ∈ Cn[a, b].

Note:Cn[a, b] is a linear space of functions.

Example 5.3 Here is a function that is continuous but not differentiable (i.e.
C0):

Let f(x) = |x| and we consider the interval [−1, 1]. The function is certainly
continuous, but not differentiable at x = 0.

Example 5.4 Here is a function that is differentiable but f ′ is not continuous
(i.e. again C0):

f(x) =
{

x2sin( 1
x ) x 6= 0

0 x = 0

Example 5.5 The function f(x) = x
4
3 is a function that is in C1 but not C2.

f(x) = x
4
3 , x ∈ <

f ′(x) =
4
3
x

1
3 ⇒ f ∈ C ′

f ′′(x) =
4
3
· 1
3
x
−2
3

f ′′(x) =
4
9
· 1
x

2
3
.

The function is not defined at x = 0, and thus not in C2.

6 Taylor’s Theorem

Now our basic question is this: if a function f is n-times differentiable, i.e.
f ∈ Cn, then what does the function have to do with its derivatives, if anything?
Or in other words, can I use the derivatives to approximate the function. The
answer is yes, and Taylor’s theorem helps us do so.

Theorem 6.1 Taylor’s Thereom Let f(x) ∈ Cn+1[a, b] and let x0 ∈ [a, b], then

f(x) ≈ f(x0)+f ′(x0)(x−x0)+
f ′′(x0)

2!
(x−x0)2+. . .+

f (n)(x0)
n!

(x−x0)n+
1
n!

∫ t=x

t=x0

f (n+1)(t)(x−t)ndt.
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Theorem 6.2 Taylor’s Theorem with Exact Remainder Let f(x) ∈ Cn[a, b] and
let f (n+1)(x) exists in (a, b). Then there exists a ζ with a < ζ < b such that

f(b) = f(a)+f ′(a)(b−a)+
f ′′(a)

2!
(b−a)2+. . .+

f (n)(a)
n!

(b−a)n+
f (n+1)ζ

(n + 1)!
(b−a)n+1.

Example 6.1 Let f(x) = ex ∈ C5 for x = 2 , on [−1, 1]. f(x) is differentiable
infinitely many times and since f (n)(x) = ex for all n, f (n)x0 = 1. The Taylor
expansion is given by

ex = 1+x+
1
2
x2+

1
6
x3+

1
24

x4+
1

120
x5+

eζ5

720
x6 = 7.26667+some arbitrary number

From Taylor’s Theorem, it is now easy to obtain a polynomial approximation by
deleting the remainder term from the formula. Now we have

ex = 1 + x +
1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5 = 7.26667

e2 = 8.26667. Taylor’s theorem gives a close approximation to the value of
a function which we can not easily compute.
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