Lipschitz Functions

Lorianne Ricco

February 4, 2004

Definition 1 Let $f(x)$ be defined on an interval I and suppose we can find two positive constants M and α such that

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq M\left|x_{1}-x_{2}\right|^{\alpha} \text { for all } x_{1}, x_{2} \in I
$$

Then f is said to satisfy a Lipschitz Condition of order α and we say that $f \in \operatorname{Lip}(\alpha)$.

Example 1 Take $f(x)=x$ on the interval $[a, b]$. Then

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|=\left|x_{1}-x_{2}\right|
$$

That implies that $f \in \operatorname{Lip}(1)$.
Now take $f(x)=x^{2}$ on the interval $[a, b]$. Then

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|=\left|x_{1}^{2}-x_{2}^{2}\right|=\left|x_{1}-x_{2}\right|\left|x_{1}+x_{2}\right| \leq M\left|x_{1}-x_{2}\right|
$$

with $M=2 \max (|a|,|b|)$. Hence, again $f \in \operatorname{Lip}(1)$.
The function $f(x)=1 / x$ on $(0,1)$. Is it $\operatorname{Lip}(1)$? How about $\operatorname{Lip}(1 / 2)$? How about $\operatorname{Lip}(\alpha)$?

Theorem $1 \operatorname{Lip}(\alpha)$ is a linear space.
Proof We will look at a part of this proof. Let $f, g \in \operatorname{Lip}(\alpha)$.

$$
(f+g)(x) \in \operatorname{Lip}(\alpha)
$$

Then,

$$
|f(x)+g(x)-f(y)+g(y)| \leq M|x-y|^{\alpha}
$$

If $f \in \operatorname{Lip}(\alpha)$ it implies that

$$
|f(x)-f(y)| \leq M_{1}|x-y|^{\alpha}
$$

If $g \in \operatorname{Lip}(\alpha)$ it implies that

$$
|g(x)-g(y)| \leq M_{2}|x-y|^{\alpha}
$$

If $(f+g) \in \operatorname{Lip}(\alpha)$ it imples that

$$
\begin{gathered}
|(f+g)(x)-(f+g)(y)| \leq M_{3}|x-y|^{\alpha} \\
|f(x)+g(x)-f(y)-g(y)|= \\
|f(x)-f(y)+g(x)-g(y)|= \\
|f(x)-f(y)|+|g(x)-g(y)|=
\end{gathered}
$$

By the triangle inequality,

$$
\begin{gathered}
|f(x)-f(y)|+|g(x)-g(y)| \leq \\
M_{1}|x-y|^{\alpha}+M_{2}|x-y|^{\alpha}=\left|M_{1}+M_{2}\right||x-y|^{\alpha}
\end{gathered}
$$

Theorem 2 If $f \in \operatorname{Lip}(\alpha)$ with $\alpha>1$ then $f=$ constant.
Proof Left as homework for everyone.

1 Lipschitz and Continuity

Theorem 3 If $f \in \operatorname{Lip}(\alpha)$ on I, then f is continous; indeed, uniformly contiuous on I.

Last time we did continuity with ϵ and δ. An alternative definition of continuity familar from calculus is: f is continuous at $x=c$ if:

- $f(c)$ exists
- $\lim _{x \rightarrow c} f(x)$ exists
- $\lim _{x \rightarrow c} f(x)=f(c)$

In order to be continuous, if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.
Proof

$$
\begin{gathered}
|f(x)-f(c)| \leq M|x-c|^{\alpha} \\
\lim _{x \rightarrow c}|f(x)-f(c)| \leq M l i m_{x \rightarrow c}|x-c|^{\alpha}=0
\end{gathered}
$$

This implies

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

How about continuous implies $\operatorname{Lip}(\alpha)$?

2 Lipschitz and Differentiability

Theorem 4 If $f \in \operatorname{Lip}(\alpha)$, it may fail to be differentiable, but if it possesses a derivative satisfying $\left|f^{\prime}(x)\right| \leq M$ then $f \in \operatorname{Lip}(1)$.

In order to be differentiable,

$$
\lim _{x \rightarrow \infty} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right)
$$

By the Mean Value Theorem,

$$
\Rightarrow \frac{|f(x)-f(y)|}{|x-y|}=\left|f^{\prime}(c)\right|, c \in(x, y)
$$

This implies that

$$
|f(x)-f(y)|=\left|f^{\prime}(c)\right||x-y|
$$

Now if

$$
\left|f^{\prime}(x)\right|
$$

exsits and is bounded by M, then

$$
|f(x)-f(y)| \leq M|x-y|
$$

which implies $f \in \operatorname{Lip}(1)$.

