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In many problems, we must associate a number with a function extracted
from a given class of functions. For example:

• to each function f(x) that has a continuous derivative on [a, b], we may
want to associate the number

∫ b

a
(1 + [f ′(x)]2)

1
2 dx.

• to each function f(x, y) that is twice continuously differentiable over a
closed bounded region B, we may have to form the number∫ ∫

B
(∂f

∂x )2 + (∂f
∂y )2dxdy

• for the same function as above we associate, more simply, f(x0, y0) where
(x0, y0) ∈ B.

Such an association is known as a functional.

Definition 0.1 Let X be a linear vector space and to each x let there be asso-
ciated a unique real (or complex) number designated by L(x). If for x, y ∈ X
and for all real (or complex) α, β we have

L(αx + βy) = αL(x) + βL(y),

then L is called a linear functional over X.

Example 0.1 X = C[a, b], i.e. the elements of X are continous functions f(x).
We define L as

L(f) =
∫ b

a

f(x)dx

.

To show this is a linear functional we must verify it is a functional and it is
linear.

To see that it is a functional is easy: if f ∈ C[a, b] then f is continous
and therefore integrable over the interval [a, b]. Therefore the integral L(f) =∫ b

a
f(x)dx exists, so that L associates to every element f a number.
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To show that it is linear we need to verify that for two functions f and g in
C[a.b] we have L(αx + βy) = αL(x) + βL(y):

L(αf + βg) =
∫ b

a

αf(x) + βg(x)dx =

=
∫ b

a

αf(x)dx +
∫ b

a

βg(x)dx =

= α

∫ b

a

f(x)dx + β

∫ b

a

g(x)dx =

= αL(f) + βL(g)

which finishes the proof.

Example 0.2 Let X = C[a, b] be as before but this time define define L as:

L(f) =
∫ b

a

x2f(x)dx

.

It is easy to see - similar to above - that L is again a functional as well as
linear.

Example 0.3 X = C2[a, b].

L(f) = f ′′(a) + f ′(b)− f(
a + b

2
)

.

Interpolation theory is concerned with reconstructing functions on the basis
of certain functional information assumed known. In many cases, the functionals
are linear.

Functionals can be added to one another and scalar products can be formed.
If, for instance, f ∈ C1[a, b] and

L1(f) =
∫ b

a

f(x)dx and L2(f) = f ′(
a + b

2
)

we can identify the functional

L(f) = α

∫ b

a

f(x)dx + βf ′(
a + b

2
)

with the expression αL1 + βL2. L is itself a linear functional.
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Definition 0.2 Let X be a given linear space and let L1 and L2 be two linear
functionals defined on X. The sum of L1 and L2 and the scalar product of α
and L1 are defined by

(a)(L1 + L2)(x) = L1(x) + L2(x), x ∈ X

(b)(αL1)(x) = αL1(x)

It is a simple matter to show that the set of all linear functionals defined on
X combined by the above rules constitute a second linear space.

Definition 0.3 Let X be a given linear space. The set of linear functionals
defined on X and combined by Definition 0.2 forms a linear space called the
algebraic conjugate space of X and denoted by X*
X*, then, has elements that are linear functionals. We can speak of linear com-
binations, linear independence, dimension, bases, etc., for linear functionals.

Theorem 0.1 If X has dimension n then X* has dimension n also.

3


