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1 What is a Complex Function?

We shall begin with a review of the basics.

Definition 1.1 (Function) A function f is a rule that assigns to each element
in a set A one and only one element in a set B.

If f assigns the value b to the element a in A, we write

b = f(a)

and call b the image of a under f . As a result of this definition of function we
sometimes refer to f as a mapping of A onto B.

We are not concerned with just any functions. We are concerned with com-
plex valued funtions of a complex variable, that is z = x + ıy, where x is the
real part and y is the imaginary part (both real-valued). For complex valued
functions, if w denotes the value of the function f at the point z, we then write

w = f(z).

Also, just as the complex number z decomposes into real and imaginary parts,
the complex function w also decomposes into real and imaginary parts, again
both real-valued. This is customarily written

w = u(x, y) + ıv(x, y),
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with u and v denoting the real and imaginary parts respectively. Thus, a
complex-valued function of a complex variable is, in essence, a pair of real
functions of two real variables.

Example 1.1 Write the function w = z2+2z in the form w = u(x, y)+ıv(x, y).

Solution: By setting z = x + ıy we obtain

w = (x + ıy)2 + 2(x + ıy) = x2 − y2 + ı2xy + 2x + ı2y.

Which then can be rewritten as

w = (x2 − y2 + 2x) + ı(2xy + 2y).

�

2 Limits and Continuity of Complex Functions

The concepts of limits and continuity for complex functions are similar to those
for real functions. Let’s first examine the concept of the limit of a complex-
valued function.

Definition 2.1 (Limit) Let f be a function defined in some neighborhood of
z0, with the possible exception of the point z0 itself. We say that the limit of
f(z) as z approaches z0 is the number w0 and write

lim
z→z0

f(z) = w0,

or equivalently,

f(z) → w0 as z → z0,

if for any ε > 0 there exists a positive number δ such that

|f(z)− w0| < ε whenever 0 < |z − z0| < δ.

This is esentially the same definition the we learned in calculus I when we
were first learning limits.

The condition of continuity is as follows.

Definition 2.2 (Continuous) Let f be a function defined in a neighborhood
of z0. Then f is continuous at z0 if

lim
z→z0

f(z) = f(z0).
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In other words, for f to be continuous at z0, it must have a limiting value
at z0, and this limiting value must be f(z0).

Furthermore, a function f is said to be continuous on a set S if it is contin-
uous at each point of S.

The definitions of this section are almost identical to concepts introduced
in Calculus I. In fact, the properties of limits and continuous functions that we
learned to be true for real functions also hold true for complex-valued functions.
Two such theorems are stated below.

Theorem 2.1 If limz→z0 f(z) = A and limz→z0 g(z) = B, then

(i) limz→z0(f(z)± g(z)) = A±B,

(ii) limz→z0 f(z)g(z) = AB,

(iii) limz→z0
f(z)
g(z) = A

B , if B 6= 0.

Theorem 2.2 If f(z) and g(z) are continuous at z0, then so are f(z) ± g(z)
and f(z)g(z). The quotient f(z)

g(z) is also continuous at z0 provided g(z0) 6= 0.

Here are some simple examples using these concepts of limits and continuity.

Example 2.1 Find the limit as z → 2ı of the function f(z) = z2 − 2z + 1.

Solution: Since f(z) is continuous at z = 2ı, we simply evaluate it there,

lim
z→2ı

f(z) = f(2ı) = 2(2ı)2 − 2(2ı) + 1 = −3− 4ı.

�

Example 2.2 Find the limit as z → 2ı of the function f(z) = z2+4
z(z−2ı) .

Solution: The function f(z) is not continuous at z = 2ı because it is not
defined there. However, for z 6= 2ı and z 6= 0 we have

lim
z→2ı

f(z) =
(z + 2ı)(z − 2ı)

z(z − 2ı)
=

z + 2ı

z
=

2ı + 2ı

2ı
=

4ı

2ı
= 2.

�
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3 Complex Differentiation

In general, a complex function of a complex variable, f(z), is an arbitrary
mapping from the xy-plane to the uv -plane. A complex function is split into
real and imaginary parts, u and v, and any pair u(x, y) and v(x, y) of two-
variable functions gives us a complex function u + ıv. However, notice there is
something special about the pair

u1(x, y) = x2 − y2, and v1(x, y) = 2xy,

as opposed to

u2(x, y) = x2 − y2, and v2(x, y) = 3xy.

The difference is that the complex function u1 + ıv1 treats z = x + ıy as
a single ”unit”, because x2 − y2 + ı2xy = (x + ıy)2. These are the types of
functions that are complex differentiable.

Definition 3.1 Let f be a complex-valued function defined in a neighborhood
of z0. Then the derivative of f at z0 is given by

df

dz
(z0) ≡ f ′(z0) := lim

∆z→0

f(z0 + ∆z)− f(z0)
∆z

,

provided this limit exists. (Such an f is said to be differentiable at z0).

The catch in this definition is that ∆z is a complex number, so it can ap-
proach zero in many different ways. Even though this catch may make things
seem slightly more difficult, the rules for differentiating real functions apply
in the same way for complex-valued functions (as long as the complex-valued
function is in a form where z = x + ıy is treated as a single unit).

Example 3.1 Show that, for any positive integer n,

d

dz
zn = nzn−1.

Solution: Using Definition 3.1 we have

(z + ∆z)n − zn

∆z
=

nzn−1∆z + n(n−1)
2 zn−2(∆z)2 + · · ·+ (∆z)n

∆z
.

Thus

d

dz
zn = lim

∆z→0

[
nzn−1 +

n(n− 1)
2

zn−2∆z + · · ·+ (∆z)n−1

]
= nzn−1.

�
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Theorem 3.1 If f and g are differentiable at z, then

(f ± g)′(z) = f ′(z)± g′(z), (1)
(cf)′(z) = cf ′(z) for any constant c, (2)
(fg)′(z) = f(z)g′(z) + f ′(z)g(z), (3)(
f

g

)′
(z) =

g(z)f ′(z)− f(z)g′(z)
g(z)2

if g(z) 6= 0. (4)

(5)

If g is differentiable at z and f is differentiable at g(z), then the chain rule
holds:

d

dz
f(g(z)) = f ′(g(z))g′(z).

4 Analyticity

Now that we have a secure background we are ready to look at the theory of
analytic functions.

Definition 4.1 A complex-valued function f(z) is said to be analytic on an
open set G if it has a derivative at every point of G.

Analyticity is a property defined over open sets, while differentiability could
hold at one point only. If the phrase ”f(z) is analytic at the point z0” is used
it means that f(z) is analytic in some neighborhood of z0.

To show that a function is analytic we use the following equations which
must hold at z0 = x0 + ıy0:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x

known as the Cauchy-Riemann equations.

Theorem 4.1 A necessary condition for a function f(z) = u(x, y) + ıv(x, y)
to be differentiable at a point z0 is that the Cauchy-Riemann equations hold at
z0. Consequently, if f is analytic in an open set G, then the Cauchy-Riemann
equations must hold at every point of G.

Example 4.1 Show that the function f(z) = (x2 +y)+ ı(y2−x) is not analytic
at any point.

Solution: Since u(x, y) = x2 + y and v(x, y) = y2 − x we have
∂u
∂x = 2x, ∂v

∂y = 2y,

∂u
∂y = 1, ∂v

∂x = −1.
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Hence the Cauchy-Riemann equations are not satisfied and f(z) is nowhere
analytic.

�

Example 4.2 If f(z) = x3 − 3xy2 + ı(3x2y − y3) then determine where, if at
all, the function is analytic. If it is analytic, find the complex derivative of f .

Solution: Since u(x, y) = x3 − 3xy2 and v(x, y) = 3x2y − y3 we have
∂u
∂x = 3x2 − 3y2, ∂v

∂y = 3x2 − 3y2,

∂u
∂y = −6xy, ∂v

∂x = 6xy.

Hence the Cauchy-Riemann equations are satisfied and f(z) is analytic. The
complex derivative of f(z) is f ′(z) = 3x2 − 3y2 + ı(6xy) = 3z2.

�

Theorem 4.2 (Cauchy’s Integral Theorem) If f is analytic on a simply
connected domain D and Γ is any loop (closed contour) in D then

∫
Γ

f(z)dz = 0.

Given f analytic inside and on the simple closed contour Γ, we know from
Theorem 4.2 that

∫
Γ

f(z)dz = 0. However, if we consider the integral
∫
Γ

f(z)
z−z0

dz,
where z0 is a point in the interior of Γ, then the integral is not going to be zero
because the integrand has a singularity inside the contour Γ. As a result, we
have Cauchy’s Integral Formula.

Theorem 4.3 Let Γ be a simple, closed, positively oriented contour. If f is
analytic in some simply connected domain D containing Γ and z0 is any point
inside Γ then

f(z0) =
1

2πı

∫
Γ

f(z)
z − z0

dz = 2πıf(z0).

Example 4.3 Find
∮

C
cos(z)
z+2+ıdz, where C is the square with corners at 0, 1,

1 + ı, and ı.

Solution: First we must rewrite the problem in the form f(z)
z−z0

.∮
C

cos(z)
z + 2 + ı

dz∮
C

cos(z)
z − (−2− ı)

dz

From this it is easy to see that z0 = −2− ı which is not included in C so it
does not pose a problem and by Theorem 4.2∮

C

cos(z)
z + 2 + ı

dz = 0.
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Example 4.4 Find
∮

C
ez

(z+5)3(z−ı)dz, where C is the circle centered at the origin
of radius 2.

Solution: Again in this example we must rewrite the problem in the form
f(z)
z−z0

.

=
∮

C

ez

(z + 5)3(z − ı)
dz

=
∮

C

ez

(z+5)3

(z − ı)
dz

In this case it is easy to see that f(z) = ez

(z+5)3 and z0 = ı. In this case
z0 = ı is included in C so Theorem 4.3 can be applied.

=
∮

C

ez

(z+5)3

(z − ı)
dz

= 2πıf(ı)

= 2πı
eı

(ı + 5)3

�

5 Entire

If f(z) is analytic on the whole complex plane, then it is said to be entire.

Definition 5.1 A function f(z) is called entire if it has a representation of the
form

f(z) =
∞∑

k=0

akzk valid for |z| < ∞.

This class of functions is designated by E. E is a linear space.

Example 5.1 Some examples of entire functions are

sin(z)
z

, 2z,

∫ z

0

et2dt,
1

Γ(z)
.

Theorem 5.1 The function f(z) =
∑∞

k=0 akzk is entire if and only if

lim
n→∞

|an|
1
n = 0.
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