# Infinitely Differentiable Functions 

Antoine jackson

March 4, 2004

## Contents

1 Introduction 1
2 Differentiable functions 1
3 Infinitely Differentiable Functions 1
4 Taylor Series 2
5 Summary of Taylor Series 2

## 1 Introduction

I will discuss the section of infinitely differentiable functions, their properties, and some useful examples to show the difference between functions that are infinitely differentiable, and those that aren't.

## 2 Differentiable functions

Definition: : A real function is said to be differentiable at a point if its derivative exists at that point. The notion of differentiablity can also be extended to complex functions (leading to the Cauchy-Riemann equations and the theory of holomorphic functions)

## 3 Infinitely Differentiable Functions

Definition: If $f(x) \in C^{n}$ on the interval $[a, b]$ for $\mathrm{n}=0,1,2 \ldots$, then $f$ is called Infinitely Differentiable on $[\mathrm{a}, \mathrm{b}]$. We shall write $C^{\infty}[a, b]$ for the class of such functions.

Use the definition to find the Taylor series (centered at c) for the function
Example 3.1 $f(x)=e^{x}$, where $c=0$

Example 3.2 $f(x)=e^{-2 x}$
Example 3.3 $f(x)=\cos (x)$, where $c=\frac{\pi}{4}$
Example $3.4 f(x)=\ln x$, where $c=1$
Example 3.5 $f(x)=\frac{1}{1+x^{2}}$ is $C^{\infty}$

## 4 Taylor Series

Definition: : If a function $f$ has derivatives of all orders at $\mathrm{x}=\mathrm{c}$, then the series

$$
\sum_{n=0}^{\infty}(x)=f(c)+f^{\prime}(c)(x-c)+\ldots .+\frac{f^{n}(c)}{n!}(x-c)^{n}+\ldots
$$

is called the Taylor series. If $c=0$ then the series is a Mclaurin Series for $f$

$$
\lim _{n \rightarrow \infty} \frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}=0
$$

for every $x$ in $I$.

## 5 Summary of Taylor Series

$$
f x)=\sum_{n=0}^{\infty} \frac{f^{n}(c)}{n!}(x-c)^{n}
$$

the coefficients $x_{n}$ are given by: $x_{n}=\frac{f^{n}(c)}{n!}$ where $f^{n}(c)$ is the $n t h$ derivative of $f$ evaluated at a point $c$.

The functions of class $C^{\infty}[a, b]$ form a linear spce. If $f \in C^{\infty}[a, b]$ and $x_{0} \in[a, b]$ we may form the Taylor expansion. The Taylor expansion for a given x , this series may or may not converge. If it converges, it may or may not converge to $f(x)$.

Proof:

## Facts to prove:

Example $5.1 f$ is continuous
Example $5.2 f$ is differentiable and $f^{\prime}(0)=0$

$$
f^{n}(0)=0
$$

Let $p(x), q(x) \in \mathbf{R}$ be polynomials and define
if $f \in C^{\infty}$, then we can certainly write a taylor series for $f$. However, it requires that this Taylor series actually converge (at least across some radius of convergence, such that the series converges absolutely for all real or complex numbers.)

$$
f(x)=\left\{\begin{aligned}
e^{\frac{-1}{x^{2}}} & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{aligned}\right.
$$

Then $f \in C^{\infty}$, and for any n greater than or equal to $0, f^{(n)}(0)=0$. So the Taylor series around 0 is 0 ; since $f(x)>0$ for all $x$ not equal to 0 , clearly it does not converge to $f$.

Example $5.3 f$ is $C^{\infty}(\boldsymbol{R})$ and $f^{n}(0)=0$
q.e.d.

