Hierarchy of Functions

Jillian Gaglione

February 4, 2004

Contents

1 Introduction 1
$2 L^{p}$ Functions 1
3 Bounded Functions 2
4 Continuous Functions 2
5 Uniformly Continuous Functions 3
6 Compact Sets 3
7 First Mean Value Theorem for Integrals 4

1 Introduction

Functions satisfy different properties which allow us to learn more about them. More specifically, we will be focusing on varying types of functions that lie in a single real or complex plane. These functions are know as L^{p} functions, bounded functions, continuous functions, and furthermore, uniformly continuous functions. We will be defining what we mean by these terms as well as showing some examples to understand these properties.

$2 L^{p}$ Functions

Definition: Let $p>0$ and $|f(x)|^{p}$ be integrable over $[a, b]$. Then this function is known as $L^{p}[a, b]$. In simplier terms, an L^{p} function can be defined as a function where

$$
\int_{a}^{b}|f(x)|^{p} d x
$$

exists.

Example 2.1 Let $f(x)=\frac{1}{x}$ on the interval [0.1]. Show if (a) $f \in L^{1}$, (b) $f \in L^{2}$, and (c) $f \in L^{\frac{1}{2}}$ on the interval $[0,1]$:
(a) $\int_{0}^{1}\left|\frac{1}{x}\right| d x=\ln (x)$ over $[0,1]$. We know that the $\ln (x)$ from $[0,1]$ is undefined because the $\ln (0)=\infty$.
(b) $\int_{0}^{1}\left|\frac{1}{x^{2}}\right| d x=-\frac{1}{x}$ over $[0,1]$. We know that $-\frac{1}{x}$ from $[0,1]$ is undefined because $-\frac{1}{0}$ is undefined.
(c) $\int_{0}^{1}\left|\frac{1}{x^{\frac{1}{2}}}\right| d x=-\frac{1}{2} x^{\frac{1}{2}}$ over $[0,1]$. We know that this integral evaluated at $[0,1]$ is equal to $-\frac{1}{2}$.

Therefore, $f \notin L^{1}$ and $f \notin L^{2}$, but $f \in L^{\frac{1}{2}}$

3 Bounded Functions

Definition: Suppose S is a nonempty set. Then the function $S \rightarrow M$ is a bounded function if there exists a M such that $|f(x)|<S$ for all $x \in S$.

The set of all functions which are bounded on S is denoted by $B(S)$ and $B(S)$ is a linear space.

Example 3.1 The set $y=\sin \left(x^{2}\right)$ is bounded on $-\infty<x<\infty$.
Example 3.2 The Gamma Function $y=\Gamma(x)$ is not bounded on the interval $0<x \leq 1$ and the interval $1 \leq x<\infty$.

4 Continuous Functions

Definition: A function is continuous at a point c in its domain D if given any $\epsilon>0$ there exists a $\delta>0$ such that if $x \in D$ and $|x-c|<\delta$, then $|f(x)-f(C)|<\epsilon$.

Moreover, a function is continuous if it is continuous at every point in its domain D.

Example 4.1 The function $f(x)=5 x-6$ is continuous in its domain However, the function

$$
g(x)= \begin{cases}1, & \text { if } x=\text { rational } \\ 0, & \text { if } x=\text { irrational }\end{cases}
$$

is not a continuous function.

PICTURE GOES HERE

Figure 1: Not Uniformly Continuous
PICTURE GOES HERE
Figure 2: Uniformly Continuous

5 Uniformly Continuous Functions

Definition: A function f with a domain D is uniformly continuous on D if for any $\epsilon>0$ there exists a $\delta>0$ such that if $s, t \in D$ and $|s-t|<\delta$ then $|f(s)-f(t)|<\epsilon$.

To understand greater what we mean by uniformly continuous, take a look at figures 1 and 2 .

As you can see in figure 1, there is not one single δ on the x-axis that will work for any fixed ϵ on the y-axis. Therefore, the graph cannot be uniformly continuous.

As you can see in figure 2, for any ϵ on the y-axis there exists a single δ that will work. Therefore, the graph is uniformly continuous.

6 Compact Sets

In a specific case, both continuity and uniform continuity overlap.
Theorem 6.1 A function which is continuous on a compact point set is uniformly continuous.

To understand this theorem we first need to define what a compact set is.
Definition: A set S of real numbers is a compact set if every sequence in S has a subsequence that converges to an element contained in S.

This definition is not so clear, therefore the following proposition helps you to understand compact sets better.

Proposition 6.1 A set S of real numbers is compact if and only if it is closed and bounded.

Example 6.1 In the earlier example above, we have already found that $f(x)=$ $\frac{1}{x}$ on the interval $\left(0, \frac{1}{2}\right)$ is a continuous function. However, this function is not uniformly continuous because it is not continuous on a compact point set.

7 First Mean Value Theorem for Integrals

Definition: Let $f(x)$ be continuous on $[a, b]$, and let

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Then, we know from the Fundamental Theorem of Calculus that $F^{\prime}(x)=f(x)$. We also know from the Mean Value Theorem that there exists a $c \in(a, b)$ such that

$$
\frac{F(b)-F(a)}{b-a}=F^{\prime}(c) \Rightarrow F(b)-F(a)=F^{\prime}(c)(b-a)
$$

This implies that

$$
\int_{a}^{b} f(t) d t=f(c)(b-a)
$$

and is known as the First Mean Value Theorem for Integrals. And the number $f(c)$ is referred to as the weighted average value of f on the interval $[a, b]$.

Example 7.1 Find the average value of $f(x)=5-2 x$ on the interval $[-1,2]$ and find a point in the interval at which the function takes on this average value.

Solution $\frac{1}{b-a} \int_{a}^{b} f(x) d x=\frac{1}{2-(-1)} \int_{1}^{2}(5-2 x) d x=\frac{1}{3}\left[5 x-x^{2}\right]_{-} 1^{2}=\frac{1}{3}(6-$ $(-6))=4$

$$
f(x)=4 \Rightarrow 5-2 x=4 \Rightarrow-2 x=-1 \Rightarrow x=\frac{1}{2}
$$

Therefore the average value of $f(x)$ on $[-1,2]$ is 4 and a point in the interval at which the function takes on this average value is $\frac{1}{2}$.

References

.D. Aliprantis, O. Burkinshaw. Principles of Real Analysis, 2nd ed., Academic Press, 1990. Khamsi, Mohamed A. S.O.S Mathematics, Math Medics LLC, 1999-2003. Availablehttp://www.sosmath.com/calculus/integ/integ04/integ04.html Wachsmuth, Bert. Interactive Real Analysis, 1994-2000.

Availablehttp://www.shu.edu/projects/reals/

