Hierarchy of Functions

Jillian Gaglione

February 4, 2004

Contents

1	Introduction	1
2	L^p Functions	1
3	Bounded Functions	2
4	Continuous Functions	2
5	Uniformly Continuous Functions	3
6	Compact Sets	3
7	First Mean Value Theorem for Integrals	4

1 Introduction

Functions satisfy different properties which allow us to learn more about them. More specifically, we will be focusing on varying types of functions that lie in a single real or complex plane. These functions are know as L^p functions, bounded functions, continuous functions, and furthermore, uniformly continuous functions. We will be defining what we mean by these terms as well as showing some examples to understand these properties.

2 L^p Functions

Definition: Let p > 0 and $|f(x)|^p$ be integrable over [a, b]. Then this function is known as $L^p[a, b]$. In simplier terms, an L^p function can be defined as a function where

$$\int_{a}^{b} \left| f(x) \right|^{p} dx$$

exists.

Example 2.1 Let $f(x) = \frac{1}{x}$ on the interval [0.1]. Show if (a) $f \in L^1$, (b) $f \in L^2$, and (c) $f \in L^{\frac{1}{2}}$ on the interval [0,1]:

(a) $\int_0^1 \left| \frac{1}{x} \right| dx = ln(x)$ over [0,1]. We know that the ln(x) from [0,1] is undefined because the $ln(0) = \infty$.

(b) $\int_0^1 \left| \frac{1}{x^2} \right| dx = -\frac{1}{x}$ over [0,1]. We know that $-\frac{1}{x}$ from [0,1] is undefined because $-\frac{1}{0}$ is undefined.

 $(c)\int_0^1 \left|\frac{1}{x^{\frac{1}{2}}}\right| dx = -\frac{1}{2}x^{\frac{1}{2}}$ over [0,1]. We know that this integral evaluated at [0,1] is equal to $-\frac{1}{2}$.

Therefore, $f \notin L^1$ and $f \notin L^2$, but $f \in L^{\frac{1}{2}}$

3 Bounded Functions

Definition: Suppose S is a nonempty set. Then the function $S \to M$ is a **bounded function** if there exists a M such that |f(x)| < S for all $x \in S$.

The set of all functions which are bounded on S is denoted by B(S) and B(S) is a linear space.

Example 3.1 The set $y = sin(x^2)$ is bounded on $-\infty < x < \infty$.

Example 3.2 The Gamma Function $y = \Gamma(x)$ is not bounded on the interval $0 < x \le 1$ and the interval $1 \le x < \infty$.

4 Continuous Functions

Definition: A function is continuous at a point c in its domain D if given any $\epsilon > 0$ there exists a $\delta > 0$ such that if $x \in D$ and $|x - c| < \delta$, then $|f(x) - f(C)| < \epsilon$.

Moreover, a function is continuous if it is continuous at every point in its domain D.

Example 4.1 The function f(x) = 5x-6 is continuous in its domain However, the function

$$g(x) = \begin{cases} 1, & \text{if } x = rational \\ 0, & \text{if } x = irrational \end{cases}$$

is not a continuous function.

PICTURE GOES HERE

Figure 1: Not Uniformly Continuous

PICTURE GOES HERE

Figure 2: Uniformly Continuous

5 Uniformly Continuous Functions

Definition: A function f with a domain D is **uniformly continuous** on D if for any $\epsilon > 0$ there exists a $\delta > 0$ such that if $s, t \in D$ and $|s - t| < \delta$ then $|f(s) - f(t)| < \epsilon$.

To understand greater what we mean by uniformly continuous, take a look at figures 1 and 2:

As you can see in figure 1, there is not one single δ on the x-axis that will work for any fixed ϵ on the y-axis. Therefore, the graph cannot be uniformly continuous.

As you can see in figure 2, for any ϵ on the y-axis there exists a single δ that will work. Therefore, the graph is uniformly continuous.

6 Compact Sets

In a specific case, both continuity and uniform continuity overlap.

Theorem 6.1 A function which is continuous on a compact point set is uniformly continuous.

To understand this theorem we first need to define what a compact set is.

Definition: A set S of real numbers is a **compact set** if every sequence in S has a subsequence that converges to an element contained in S.

This definition is not so clear, therefore the following proposition helps you to understand compact sets better.

Proposition 6.1 A set S of real numbers is compact if and only if it is **closed** and **bounded**.

Example 6.1 In the earlier example above, we have already found that $f(x) = \frac{1}{x}$ on the interval $(0, \frac{1}{2})$ is a continuous function. However, this function is not uniformly continuous because it is not continuous on a compact point set.

7 First Mean Value Theorem for Integrals

Definition: Let f(x) be continuous on [a, b], and let

$$F(x) = \int_{a}^{x} f(t)dt$$

Then, we know from the Fundamental Theorem of Calculus that F'(x) = f(x). We also know from the Mean Value Theorem that there exists a $c \in (a, b)$ such that

$$\frac{F(b) - F(a)}{b - a} = F'(c) \Rightarrow F(b) - F(a) = F'(c)(b - a)$$

This implies that

$$\int_{a}^{b} f(t)dt = f(c)(b-a)$$

and is known as the **First Mean Value Theorem for Integrals**. And the number f(c) is referred to as the weighted average value of f on the interval [a, b].

Example 7.1 Find the average value of f(x) = 5 - 2x on the interval [-1, 2] and find a point in the interval at which the function takes on this average value.

Solution
$$\frac{1}{b-a} \int_a^b f(x) dx = \frac{1}{2-(-1)} \int_1^2 (5-2x) dx = \frac{1}{3} [5x-x^2]_- 1^2 = \frac{1}{3} (6-(-6)) = 4$$

 $f(x) = 4 \Rightarrow 5 - 2x = 4 \Rightarrow -2x = -1 \Rightarrow x = \frac{1}{2}$

Therefore the average value of f(x) on [-1,2] is 4 and a point in the interval at which the function takes on this average value is $\frac{1}{2}$.

References

.D. Aliprantis, О. Burkinshaw. **Principles** of Real Analysis, 2nd Academic Press, 1990. Khamsi, Mohamed ed., А. S.O.S Mathematics, Math Medics LLC, 1999-2003. Available<http://www.sosmath.com/calculus/integ/integ04/integ04.html> Wachsmuth, Bert. Interactive Real Analysis, 1994-2000. Available<http://www.shu.edu/projects/reals/>