MATH 3912-Definitions and Theorems (2)

Definitions

1. The determinant of an $n \times n$ matrix
2. A linear vector space X

3 . Vectors $v_{1}, v_{2}, \ldots, v_{n}$ are linearly dependent (or independent)
4. The space $L^{p}([a, b])$, where $p>0$ and $[a, b]$ is an interval in \boldsymbol{R}
5. A function $f:[a, b] \rightarrow \boldsymbol{R}$ is bounded
6. A function $f:[a, b] \rightarrow \boldsymbol{R}$ is continuous
7. A function $f:[a, b] \rightarrow \boldsymbol{R}$ is uniformly continous
8. A function $f:[a, b] \rightarrow \boldsymbol{R}$ is Lipschitz with power α, i.e. $f \in \operatorname{Lip}(\alpha)$
9. The space $C^{n}([a, b])$, where $[a, b]$ is an interval in \boldsymbol{R}
10. The space $C^{\infty}([a, b])$, where $[a, b]$ is an interval in \boldsymbol{R}
11. A Taylor series for a function f centered at a point c
12. A power series centered at a point c
13. A function that is real analytic
14. A function of a complex variable that is analytic
15. What is an entire function?
16. What is a polynomial?
17. What is a functional, and what is a linear functional?
18. What is a conformal map?

Theorems

1. When does a system of linear equations $\sum_{j=1}^{n} a_{i j} x_{j}=b_{j}$ for $i=1,2, \ldots, n$ possess a unique solution?
2. What conditions can you put on a function f and its domain to ensure it is bounded?
3. What conditions can you put on a function f and its domain to ensure it is uniformly continous?
4. What is the Mean Value Theorem for a function $f:[a, b] \rightarrow R$?
5. What is the First Mean Value Theorem for Integral?
6. What is Rolle's Theorem?
7. What is the Generalized Rolle's Theorem?
8. What is Taylor's Theorem?
9. What is Cauchy's Integral Formula?
10. What is the Fundamental Theorem of Algebra (and, by the way, what is the Fundamental Theorem of Calculus?)
11. What is the Factorization Theorem and the Uniqueness Theorem?
12. What is the image of circles, radius $r \geq 1$, under the (complex) function $f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right)$?
