MATH 3912-Assignment 5

1. Suppose $p \in \boldsymbol{P}_{2}$ and $p\left(x_{0}\right)=p^{\prime}\left(x_{0}\right)=p^{\prime \prime}\left(x_{0}\right)=0$. Show that p must be identically zero.
2. Suppose $p \in \boldsymbol{P}_{2}$ and suppose that $p\left(x_{1}\right)=p^{\prime}\left(x_{1}\right)=0$ and $p\left(x_{2}\right)=0$ for some fixed numbers $x_{1} \neq x_{2}$. Show that p must then be identically zero.
3. Show that if $p \in \boldsymbol{P}_{n}$ and p has a root of total multiplicity $n+1$ then p must be identically zero. Recall that p has a root of multiplicity $n+1$ at $x=a$ if $p(a)=p^{\prime}(a)=\ldots=p^{(n)}(a)=0$
4. If $p(x)$ is a polynomial of even degree, what is $\lim _{x \rightarrow \infty} p(x)$ and $\lim _{x \rightarrow-\infty} p(x)$? Evaluate the same limits in case p is a polynomial of odd degree.
5. If $f(x)$ is a polynomial then $\lim _{n \rightarrow \infty} f^{(n)}(x)=0$ for all x.
6. Show that $f(x)=2^{x}$ can coincide with a polynomial at only a finite number of points.
7. Suppose f is real analytic for all x and $f^{(k)}(x)>0$ for $k=0,1, \ldots$. Then f can not coincide with a polynomial infinitly often.
8. Suppose $X=C^{1}([a, b])$ and x_{0} is a fixed point in $[a, b]$. Define $L(f)=f^{\prime}\left(x_{0}\right)$ for all $f \in X$. Is L a linear functional?
9. Suppose $X=C^{0}([a, b])$. Define two functionals L and G via

$$
L(f)=\int_{a}^{b} x^{2} f(x) d x \text { and } G(f)=\int_{a}^{b}(f(x))^{2} d x
$$

Which of these functions is linear?
10. Suppose $X=\boldsymbol{P}^{n}, x_{0}$ is a fixed point in $[a, b]$, and f is a continous function defined on the interval $[a, b]$. Define $L(p)=(f \circ p)\left(x_{0}\right)$. Is L a linear functional?
11. Suppose $X=C^{1}([a, b])$. Define $L(f)=f^{\prime}$ for all $f \in X$. What is the range of this map L ? Is the map L linear? Is L a linear functional?
12. Let X be the space of $n \times n$ matrices and define $L(A)=\operatorname{det}(A)$. Is L a linear functional?
13. Let X be the space of $n \times n$ matrices. For a matrix $A \in X$ define the trace of A as

$$
\operatorname{trace}(A)=\operatorname{trace}\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \ldots & a_{n, n}
\end{array}\right)=a_{1,1}+a_{2,2}+\ldots+a_{n, n}
$$

Is $L(A)=\operatorname{trace}(A)$ a linear operator?

