MATH 3912-Assignment 4

1. Suppose $f(x)=x\left(x^{2}-1\right)$, defined on the interval $(-1,1)$. Does Rolle's theorem apply? If so, find the point $c \in(-1,1)$ that is guaranteed to exist (there could be more than one correct answer).
2. If $f(x)=x\left(x^{2}-1\right)$ on $(-1,1)$ then $f(-1)=f(0)=f(1)=0$, so the Generalized Rolle's theorem applies. Find all points that are guaranteed to exist by the generalized Rolle's theorem in this case. Hint: There should be two points where $f^{\prime}=0$ and one point where $f^{\prime \prime}=0$.
3. Show that $f(x)=x^{\frac{4}{3}}$ is $C^{1}(\mathbf{R})$ but not $C^{2}(\mathbf{R})$. What about $f(x)=x^{\frac{7}{3}}$?
4. Find a function $f(x)$ that is C^{n} but not C^{n+1} on the real line (you can not use the function below even though it does have the right properties, but you could make up a function that's similar to the ones above).
5. Show that the function f defined below is $C^{k-1}(\mathbf{R})$ but not $C^{k}(\mathbf{R})$ on $(-1,1)$.

$$
f(x)=\left\{\begin{array}{ccc}
x^{k} & \text { for } & x \geq 0 \\
0 & \text { for } & x<0
\end{array}\right.
$$

6. Show that the function f defined below is continuous but not differentiable at $x=0$ (which would put this function into $C^{?}$)

$$
f(x)=\left\{\begin{array}{cll}
x \sin \left(\frac{1}{x}\right) & \text { for } & x \neq 0 \\
0 & \text { for } & x=0
\end{array}\right.
$$

7. Find the 6 -th Taylor polynomial for the function $f(x)=\cos (x)$ around $x=0$. Then use that polynomial to approximate the value of $\cos (0.5)$. Use a calculator to compare your approximation with the actual value of $\cos (0.5)$ (don't forget to switch your calculator into radian).
8. Find the 5 -th Taylor polynomial for the function $f(x)=\ln x$ around $x=1$ and use it to approximate the value of $\ln (1.5)$. Use a calculator to compare your approximation with the actual value.
9. Find the 3-rd Taylor polynomial for the function $f(x)=x\left(x^{2}-1\right)$ around $x=-1$. Then find the 10 -th and the 20 -th Taylor polynomial for that function around $x=-1$.
10. Show that if $f(x)$ is a polynomial then $\lim _{x \mapsto \infty} f^{(n)}(x)=0$ for all x. Is the converse also true?
11. For many functions such as e^{x} and $\sin (x)$ or $\cos (x)$ we can use higher and higher Taylor polynomials to get better and better approximation (polynomials of higher and higher degrees). Does this process work for every function?
