MATH 3912 - Assignment 3

1. Recall that a function is $\operatorname{Lip}(\alpha)$ if $f(x)-f(y)|\leq M| x-\left.y\right|^{\alpha}$ for all x, y in the function's domain.
(a) Is it true that a function f that is $\operatorname{Lip}(1)$ is continuous? Prove it or give a counter-example.
(b) Is it true that a function $f: D \mapsto R$ is continuous implies that f is $\operatorname{Lip}(1)$? If not, give a counterexample.
(c) Is it true that a function f that is $\operatorname{Lip}(1)$ is uniformly continuous? Prove it or give a counter-example.
(d) Is it true that if f is uniformly continuous it must be $\operatorname{Lip}(1)$? If not, give a counter-example (you could try $f(x)=x^{\frac{1}{3}}$ in a neighborhood of 0)
2. Is the function $f(x)=x^{2} \in \operatorname{Lip}(1)$? How about the function $f(x)=\frac{1}{x}$ on the interval $(0,1)$?
3. Show that if $f:[a, b] \mapsto R$ is a function that is differentiable and whose derivative is bounded on $[a, b]$ is $\operatorname{Lip}(1)$.
4. Find a function $f:[0,1] \mapsto R$ that is differentiable but not $\operatorname{Lip}(1)$.
5. Find a function $f:[0,1] \mapsto R$ that is $\operatorname{Lip}(1)$ but not differentiable.
6. Show that if $f \in \operatorname{Lip}(2)$ and f is differentiable then f must be constant. As a hint, consider the definition of derivative, then use the Lipschitz condition to conclude something about f^{\prime}.
7. Prove that if $f \in \operatorname{Lip}(\alpha)$ with $\alpha>1$ and f differentiable then f must be constant. For extra credit, prove this statement when the differentiability condition is dropped.
