MATH 3912 - Assignment 2

1. Recall that a function $f: D \mapsto R$ is bounded if there exists a constant M such that $|f(x)| \leq M$ for all $x \in D$. For our discussion assume that D is an interval such as (a, b), [a, b], $(-\infty, b)$, (a, ∞) , or corresponding half-open intervals on the real line.

Find a function that is not bounded. Is it true that every continuous function is bounded? If not, find conditions on the domain that ensure that continuous functions *are* bounded. Are all differentiable functions bounded?

- 2. For what values of a and b are the functions $f(x) = ax^b$ bounded on [0, 1]?
- 3. For what values of a and b are the functions $f(x) = \frac{1}{x^2 + ax + b}$ bounded on [-1, 1].
- 4. Consider the function $f(x) = 1/x^2$. Is the function:
 - (a) Continuous on the interval [0, 1]?
 - (b) Continuous on the interval (0, 1)?
 - (c) Continuous on the interval [1, 2]?
 - (d) Continuous on the interval $[1, \infty)$?
 - (e) Uniformly continuous on the interval [0, 1]?
 - (f) Uniformly continues on the interval (0, 1)?
 - (g) Uniformly continuous on the interval [1, 2]?
 - (h) Uniformly continuous on the interval $[1, \infty)$?
- 5. Show that the function $f(x) = e^{-x}$ is uniformly continuous over the interval $[0, \infty)$. What about on the interval $(-\infty, 0)$ (explain by means of a picture)?
- 6. Recall that a function f is $L^p[a, b]$ if $\int_a^b |f(x)|^p dx$ exists.
 - (a) Is the function $f(x) = \frac{1}{x} \in L^1[0, 1]$?
 - (b) Is the function $f(x) = \frac{1}{x^{1/2}} \in L^1[0, 1]$?
 - (c) Is the function $f(x) = \frac{1}{x^{1/2}} \in L^2[0, 1]$?
 - (d) For a fixed $0 \le \alpha < 1$ find p such that $f(x) = \frac{1}{x^{\alpha}} \in L^p[0, 1]$?