MATH 3912-Assignment 2

1. Recall that a function $f: D \mapsto R$ is bounded if there exists a constant M such that $|f(x)| \leq M$ for all $x \in D$. For our discussion assume that D is an interval such as $(a, b),[a, b],(-\infty, b),(a, \infty)$, or corresponding half-open intervals on the real line.
Find a function that is not bounded. Is it true that every continuous function is bounded? If not, find conditions on the domain that ensure that continuous functions are bounded. Are all differentiable functions bounded?
2. For what values of a and b are the functions $f(x)=a x^{b}$ bounded on $[0,1]$?
3. For what values of a and b are the functions $f(x)=\frac{1}{x^{2}+a x+b}$ bounded on $[-1,1]$.
4. Consider the function $f(x)=1 / x^{2}$. Is the function:
(a) Continuous on the interval $[0,1]$?
(b) Continuous on the interval $(0,1)$?
(c) Continuous on the interval $[1,2]$?
(d) Continuous on the interval $[1, \infty)$?
(e) Uniformly continous on the interval $[0,1]$?
(f) Uniformly continous on the interval $(0,1)$?
(g) Uniformly continuous on the interval $[1,2]$?
(h) Uniformly continuous on the interval $[1, \infty)$?
5. Show that the function $f(x)=e^{-x}$ is uniformly continuous over the interval $[0, \infty)$. What about on the interval $(-\infty, 0)$ (explain by means of a picture)?
6. Recall that a function f is $L^{p}[a, b]$ if $\int_{a}^{b}|f(x)|^{p} d x$ exists.
(a) Is the function $f(x)=\frac{1}{x} \in L^{1}[0,1]$?
(b) Is the function $f(x)=\frac{1}{x^{1 / 2}} \in L^{1}[0,1]$?
(c) Is the function $f(x)=\frac{1}{x^{1 / 2}} \in L^{2}[0,1]$?
(d) For a fixed $0 \leq \alpha<1$ find p such that $f(x)=\frac{1}{x^{\alpha}} \in L^{p}[0,1]$?
