MATH 3912 - Assignment 1

1. Compute the determinant of

$$
\left(\begin{array}{ccc}
6 & 0 & -8 \\
8 & 3 & 0 \\
6 & 3 & -4
\end{array}\right)
$$

2. Compute the determinant of the lower triangular matrix

$$
\left(\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 \\
a_{31} & a_{32} & a_{33} & 0 \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right)
$$

3. Suppose A is a lower triangular n by n matrix as defined below. Show that $\operatorname{det}(A)=\prod_{i=1}^{n} a_{i i}$, or in other words the determinant of A is the product of the entries in the main diagonal.

$$
A=\left(\begin{array}{cccccc}
a_{11} & 0 & \ldots & & & 0 \\
a_{21} & a_{22} & 0 & \ldots & & 0 \\
a_{31} & a_{32} & a_{33} & 0 & \ldots & 0 \\
\vdots & & & \ddots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & & a_{n n}
\end{array}\right)
$$

4. Find the determinant of the matrix V defined as follows:

$$
V=\left(\begin{array}{ccc}
1 & z_{0} & z_{0}^{2} \\
1 & z_{1} & z_{1}^{2} \\
1 & z_{2} & z_{2}^{2}
\end{array}\right)
$$

5. Solve the following system of equations, if there is a solution:

$$
\begin{aligned}
8 x_{1}-2 x_{2}+x_{3} & =1 \\
2 x_{1}-8 x_{2} & =7 \\
-2 x_{1}-6 x_{2}-7 x_{3} & =2
\end{aligned}
$$

6. Suppose $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$ is a quadratic polynomial. Find the coefficients of that polynomial so that

$$
\begin{aligned}
p(-1) & =1 \\
p(0) & =4 \\
p(1) & =1
\end{aligned}
$$

7. Suppose

$$
\vec{v}_{1}=\langle 7,-5,5\rangle, \vec{v}_{2}=\langle 6,0,0\rangle, \text { and } \vec{v}_{3}=\langle-3,5,0\rangle
$$

are three vector in R^{3}. Are they linearily independent? What about the vectors

$$
\vec{w}_{1}=\langle-3,-6,-7\rangle, \vec{w}_{2}=\langle 0,2,-15\rangle, \text { and } \vec{w}_{3}=\langle 3,8,-8\rangle
$$

How about

$$
\vec{z}_{1}=\langle 6,0,0\rangle, \vec{z}_{2}=\langle-3,5,0\rangle, \vec{z}_{3}=\langle-3,-6,-7\rangle, \text { and } \vec{z}_{4}=\langle 0,2,-15\rangle
$$

