Real Analysis HW 11

- 1. True or false:
 - a. If $\int_{a}^{b} f(x) dx = 0$, then f(x) = 0 on [a, b]
 - b. If $\int_x^y f(t)dt = 0$ for all $x, y \in [a, b]$ then f(x) = 0 on [a, b]
 - c. If f is continuous on [a, b] and $\int_x^y f(t)dt = 0$ for all $x, y \in [a, b]$ then f(x) = 0 on [a, b]
- 2. Decide if the following function sequences converge or converge uniformly. *Hint: for some sequences it might help to keep in mind what uniform convergence would imply for the limit function*
 - a. $f_n(x) = \frac{x}{n}$ on [-10,10]. How about on **R**? b. $f_n(x) = \frac{nx}{1+nx}$ on [0,1]. c. $f_n(x) = \frac{x^n}{1+x^n}$ on [0,1]. How about on $[0,\infty)$? d. $f_n(x) = \frac{x^n}{n+x^n}$ on [0,1]. How about on $[0,\infty)$? e. $f_n(x) = nxe^{-nx}$ on [0,2]?. How about on $[2,\infty)$
- 3. Consider $f_n(x) = \frac{n + \cos(x)}{2n + \sin^2(x)}$. Find the limit function and show that f_n converges uniformly to f for all x in **R**. Then calculate $\lim_{n\to\infty} \int_2^7 f_n(x) dx$
- 4. Show that if *f_n* are *uniformly* continuous on D and *f_n* converges uniformly to *f*, then *f* is *uniformly* continuous.
- 5. Show that if f_n and g_n both converge uniformly to f and g, respectively, then $f_n + g_n$ is uniformly convergent to f + g
- 6. Show that if f_n and g_n both converge uniformly to f and g, respectively, then $f_n g_n$ does not necessarily converge uniformly (i.e. find a counter-example).
- 7. Show that if f_n and g_n both converge uniformly to f and g, respectively, and $|f_n| < M$ and $|g_n| < M$ for all *n* then $f_n g_n$ converges uniformly to f g.
- 8. How that if $\sum |a_k| < \infty$ then $\sum a_k x^k$ converges uniformly to a continuous function.
- 9. If $\sum_{n=1}^{\infty} g_n(x)$ is a series of continuous function g_n which converges uniformly on [a, b] to a function g. Then

$$\int_{a}^{b} g(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} g_{n}(x) dx$$