Real Analysis HW 10

1. We know that the Dirichlet function is not Riemann integrable, while the function $f(x)=1 / q$ if $x=p / q$ is rational and $f(x)=0$ if x is not rational is Riemann integrable and the Riemann integral is zero over the interval $[0,1]$. What about

$$
f(x)= \begin{cases}x & \text { if } x \\ \text { is rational } \\ 0 & \text { else }\end{cases}
$$

Is that function integrable? If so, what is the integral of f over $[0,1]$
2. Prove that $f(x)=3 x$ is Riemann integrable over the interval $[0,2]$ using the definition of Riemann integration. Then prove that $f(x)=3 x$ is Riemann integrable over the interval $[0,2]$ using the Riemann lemma.
3. The function $f(x)=1 / x$ has only one point of discontinuity on the interval $[-3,3]$. It should therefore be Riemann integrable on that interval? But is it really integrable? If not, explain why not and why this does not violate the theorem that a function that is *almost* continuous is integrable.
4. The function $\operatorname{Si}(x)$ is defined via $\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin (t)}{t} d t$. Graph $\operatorname{Si}(x)$ for $x>0$ by finding critical points, extreme values, inflection points, etc. (if any).
5. Prove that $\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) \cos (n x) d x=0 \quad$ for any function f that is continuously differentiable.
6. Suppose $h(x)$ and $k(x)$ are continuous on [a, b] and $\int_{a}^{b} h(x) d x=\int_{a}^{b} k(x) d x$. Prove that there exists a number $c \in[a, b]$ such that $h(c)=k(c)$.
Hint: Use the Mean Value Theorem 7.2.8 for Integration with $f(x)=h(x)-k(x)$ and $g(x) \equiv 1$.
7. Find a function $f:[0,1] \rightarrow \boldsymbol{R}$ such that f is not Riemann integrable but $|f|$ is Riemann integrable. Hint: Look at a function that is somewhat similar to the Dirichlet function .
8. Show that if f is Riemann integrable then f^{2} is also Riemann integrable.

Hint: If $|f(x)| \leq M$ then $\left|f^{2}(x)-g^{2}(x)\right| \leq 2 M|f(x)-g(x)|$ for all $x, y \in[a, b]$. Then estimate $U\left(f^{2}, P\right)-L\left(f^{2}, P\right)$ in terms of $U(f, P)-L(f, P)$ for a given partition.
9. Find the following integrals:
a. $\int \frac{2 x}{1-x^{2}} d x$
b. $\int \frac{2}{4-x^{2}} d x$
c. $\int x^{2} \sin (x) d x$
d. $\int e^{x} \sin (x) d x$
e. $\int \cos ^{3}(x) d x$

