Chapter 4 Homework

1. Use one or more appropriate convergence tests to show if the series converges absolutely or conditionally or diverges:
a) $\sum_{n=3}^{\infty} \frac{n^{2}+2 n+3}{n^{3}+2 n^{2}+3 n+4}$
b) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt[3]{n+3}}$
c) $\sum_{n=0}^{\infty} \frac{5^{n}+3 n}{8^{n}-1}$
d) $\sum_{n=0}^{\infty} \frac{\sin (n)}{4^{n}}$
e) $\sum_{n=0}^{\infty} \frac{2^{n}}{(n+1)^{2}}$
f) $\sum_{n=1}^{\infty} \frac{n^{2} 2^{n}}{n!}$
g) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{n^{n}}$
h) $\sum_{n=1}^{\infty} \frac{2^{n^{n}}}{(n!)^{n}}$
i) $\quad \sum_{n=1}^{\infty} \frac{3-\cos (n)}{n^{\frac{2}{3}}}$
2. For which values of p is $\sum_{n=2}^{\infty}(-1)^{n} \frac{(\ln (n))^{\mathrm{p}}}{n}$ convergent?
3. Give an example of series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$, each of which converges, but such that $\sum_{n=1}^{\infty} a_{n} b_{n}$ diverges. (Hint: try conditionally convergent series, not absolute convergent ones)
4. Give an example of a divergent series whose partial sums are bounded.
