Panel 1
Application al Derivatives:
Guph $f(x)=x e^{-x^{2}}$

$$
f^{\prime}=e^{-x^{2}}-2 x^{3} e^{-x^{2}}=e^{-x^{2}}\left(1-2 x^{3}\right]
$$

Panel 2
Roble's Theorem. f cont. on $[a, b]$ and diffle on (a, s). If $f(a)=f(s)=0$ K em $\lambda<b(a, s) d$. $f^{\prime}(c)=0$

Prot. It $f=O$ dove.
Suppose not f cent. on cputset \rightarrow has uar and win. One of (lan wist be not bro (elbe foo). \rightarrow Dorsum $f(c) \neq 0$ is wax: $(x) c \in(0, s)) \quad$ bet $f^{\prime}(c)=x_{0}=0$

Panel 3
Mesin Value theorem: f is cout. on $[a, S]$ and diflelle on (a, s). Then $j_{c} \in(c)$) \&

$$
f^{\prime}(\varepsilon)=\frac{f(S)-C(a)}{5-e}
$$

Poort: Wout to define a new function $L(x)$ c.t.

$$
\begin{aligned}
& g(x)=f(x)-C(x) \text { has paraels } g(a)=0=g(b) \\
& \Rightarrow C(a)=f(a) \text { and } L(s)=f(s) \quad \text { Dut now } \\
& \Rightarrow C(x)=\frac{f(s)-f(a)}{s-a}(x-a)+f(a) \quad g\left((a)=f^{\prime}(x)-\frac{f(c)-f(x)}{s-a}=0\right. \\
& \text { ged }
\end{aligned}
$$

qued
Panel 4
Mean Volue Therem for 2 Functious:
f, g cont. on $[a, s]$, difthle on (a, s), and $g^{\prime}(x) p 0$.
Then $f_{c}(0,1)$ so

$$
\frac{f(b)-H_{(x)}}{f(s)-g(s)}=\frac{f^{\prime}(d)}{g^{\prime}(c)}
$$

$\left.\xrightarrow{\text { Puot. Comuich }} \quad h(x)=f(x)-\frac{f(s)-f(a)}{q(s)-q(a)}(q(x)-g(x))-f s\right)$

$$
h(a)=0, \ln (b)=0, h^{1}-f(f) \frac{f(s)-f(a)}{g(s)-g(a)} q^{\prime}(d)=0
$$

Panel 5
Riemann Integpaition CChapter 71
In Cale: Phink of integab as avea under arre In Reals: as fancy sumation

Def: A parkition of $[a, s]$ is a set of pointo $P=\left\{x_{0,1} x_{1,-}, x_{n}\right\}$ sh $a=x_{1}<x_{1}<x_{2}<\ldots<x_{n}=\leqslant$
Norm of a purlition $P=\max \left[\left|x_{j}-x_{j-1}\right|\right]$
Refinement of purtition P_{3} is past P^{1} that las all poois hoim P as well as some exta paill.

Det: Rlimann Sums: Fake a purtition P of $[a, b]$.
Debin u-the Rieman sum of f with uopect to P.

$$
R(f, p)=\sum_{j=1}^{n} f\left(t_{j}\right)\left(x_{j}-x_{j-1}\right) \quad, t_{j} \in\left[x_{j 1}, x_{j}\right]
$$

http://www.mathcs.org/analysis/reals/classes/In...

Ex find $R(f, P)$ for $f(x)-x^{2}$ on $[0,2], P a$ requlaxly spaced partition of u-pouts, faking the uight eudpoint of euch subinterval.

$$
\begin{aligned}
P=\left\{0, \frac{2}{n}, \frac{4}{n}\right. & \left.\frac{2 n}{n}=2\right\} \\
R(f, P) & =\sum_{j=1}^{n} f\left(\frac{2}{n} \cdot j\right)\left(\frac{2}{n} j-\frac{2}{n}(j-1)\right)= \\
& =\sum_{i=1}^{n}\left(\frac{2}{n} j\right)^{2} \cdot \frac{2}{n}=\frac{8}{n^{3}} \sum_{j=1}^{n} j^{2}=\frac{8}{n^{3}} \cdot \frac{4(u+1)(2 n+1)}{6} \\
& =\frac{4}{3} \frac{u(u+1)(2 u+1)}{n^{2}} \longrightarrow \frac{P}{3}=\frac{R^{3}}{3} \cdot \int_{0}^{2} \frac{2}{3}
\end{aligned}
$$

Panel 8
Trouble with Riomnuu sum: $R(t, p)=\sum f\left(t_{i}\right)\left(x_{j}-x_{i-1}\right)$ don't know where f_{j} are.
Solution 1: bale bets andicit a Ceft O.S. Sm lale ligt endpxito
Pablen: no couhole ofier sice of If $\left(t_{i}\right)$ Solution 2 :
Uppuriver $U(f, P)=\sum_{i=1}^{n} c_{j}\left(x_{j}-x_{j-1}\right), c_{j}=\sup \left(f(x) a\left[x_{1}+x_{j}\right)\right.$
caversm $L($ GP $P)=$
Pablen, may not be Riomans sums's

Q: Are upper / lower sums alcereys Riemann Suns? IA not, hind criteria so that they are.

Ex: Find upper/lower sum for Dirichlet tunelion
$\underline{\text { Panel } 10}$
Def: Suppose f is laded on $[a, 5]$. Define

$$
\begin{aligned}
& I^{*}=\operatorname{int}[u(f P) \cdot P] \\
& I_{*}=\operatorname{sun}[L(\kappa P) \cdot P]
\end{aligned}
$$

I is the upper R, Int, I_{a} is de lower RPAA Then f is called iclepath if $I^{*}=I_{x}$ and de common value is called

$$
\int_{a}^{b} l(x) d x
$$

By: If $f(x)=x^{2}$ inkquable on $[0,1]$? Why cound it be unerediffechlt on $[-1,1]$? (it is diflicult pouyh as it is)

http://www.mathcs.org/analysis/reals/integ/ans...
Panel 12
$f(x)=x^{2}$ on $[0,1]$ in integna Qh. Find $\int_{0}^{1} f(x) d x$!
Proots, Talue $\varepsilon>0 \quad$ (Pa patatoion anh $|P|<\varepsilon / 2$ comichr $|U-L| \in \sum\left|d_{j}-c_{j}\right|\left(x_{j}-x_{j-1}\right)$ af f in inereanil $\Rightarrow d_{j}-f\left(x_{1}\right)$ a ionte $^{c_{j 2}} l\left(x_{i-1}\right) x^{c^{\mu}}$ Need to es counte $\left|d_{0}-c_{\gamma}\right|=\left|f\left(x_{j}\right)-\mathbb{L}\right| x_{1}| |$ but $\quad|f| f) f(x)|\varepsilon| f(0)||x-x| \leqslant 2| g-x \mid$

$$
\Rightarrow \mid f\left(x_{i}\left|-f\left(x_{i-1}\right)\right| \in 2 \mid x_{i}-x_{i-1}\right) \leqslant 2 \cdot \varepsilon_{2}=\varepsilon!
$$

Panel 13

$$
\begin{aligned}
\Rightarrow \int U-C \mid & \varepsilon \sum\left|f\left(x_{1}\right)-C\left(x_{i-1}\right)\right|\left|x_{1}-x_{i-1}\right| \\
& \in \sum_{r=1}^{\infty} \varepsilon\left|x_{1}-x_{i-1}\right|-\varepsilon\left(x_{1}-\lambda_{6}+x_{2}-x_{1} a\right) \\
& =\varepsilon\left(x_{n}-x_{6}\right)=\varepsilon I=\varepsilon
\end{aligned}
$$

Thus: $I^{4}=I_{3}$ so $L_{2}{ }^{l}$ is is iepacle
Nexd. Fidel le valuee of the intepul.
\Rightarrow Ir.l pich dequeb-phov. spaced, helpholl

Panel 14
Is the Diriculat function intbl?

Thu; Is I io (ont.on $[a, b)$ hew fis Recmani iwthle!

