Panel 1
Welcome Dack - Remember where we beft:
Limib.
if $\mid x$-ckes $\rightarrow|A(x)-L|<C$
iA $x_{n} \rightarrow c$ anen $f\left(x_{n}\right) \rightarrow L$
Contimuity: $\quad \lim _{x \rightarrow 6} f(x)=1\left(\lim _{x \rightarrow 2} x\right) \cdot f(c)$
Uniffann contwnuves: $|1| t-s|<r \rightarrow| r(l)-C(\eta) / e c$
Dincontimuitios - rumonath

$$
\begin{aligned}
& \text { jump } \\
& \text { essuchials }
\end{aligned}
$$

(Monutown hundurs can have at most councable many doic., no eruntinh
Panel 3
Min / Max Theorm: f cont on couppect set C o f has max + min

Past. $\mathbb{L}(C)$ in comput.) $\sup (f(x), x \in C)$ tsitt (fecuns $s t)$ int lyith
\Rightarrow sup, in $A \in f(C)$ lecuruits deval
Dobano's Tharom: $I_{1} \&$ is cout on $[k, b]$ and $f(a) \cdot f(b)<0$, f. $f(c), f(b)$ kun dillowh sigus, then $A_{c} \in(a, s)$ s.t. $f(c)=\sigma$

$$
\Rightarrow 0^{6}(f(k), c(s)) \Rightarrow \exists c \text { s. } f(c)=0
$$

Panel 2
Topolown and Contiwrily
f is continuous. IA $f^{-1}(U)$ is open if $U n$ ope $f^{-1}(C)$ ucloral if C is cored

Nole: $J f\left(C_{\text {in }}\right.$ compent $\Rightarrow f^{-1}(c)$
Is U is connectud $\Rightarrow f^{-1}(u)$
If l is closed: $f^{-1}(u) a^{d}$ uec. loned
Il U in bdel: $f^{-1}(u)$ not wae sded.

Panel 4
Ex $p(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\ldots+a_{1} x+a_{0}$, \& odd $\Rightarrow p(x)=0$ for at leust one solution

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} p(x)=\operatorname{siq}\left(a_{n}\right) \infty, \lim _{x \rightarrow-\infty} p(x) \cdots \operatorname{sign}\left(a_{n}\right) \cdots 0 \\
& \Rightarrow 3 x_{1} \cosh p\left(x_{1}\right) \geqslant 10 \quad \exists x_{2} \cos \left(l_{p}\left(x_{2}\right)<-10\right.
\end{aligned}
$$

Inturmediate Vulue Thowi
H(1)

Panel 5
Differmbiatle Function:
Def f in suftele at $x<c$ if

$$
\begin{aligned}
& \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \\
& x-c=h \\
& \text { ix: } f(x)=\sqrt{9-x^{2}} \text {. iud } f^{\prime}(x)=i\left(9-x^{2}\right)^{-\prime \prime} \cdot f(2) \\
& \lim \frac{\sqrt{9-x^{2}}+\sqrt{9-c^{2}}}{x-c} \frac{(\sqrt{ }+\sqrt{n})}{(\sqrt{ }+\sqrt{ })}=\lim _{x \rightarrow c} \frac{\left(a-x^{2}\right)-\left(a x^{2}\right)}{\left(x+\sqrt{\left(\sqrt{9-x^{2}}+\sqrt{9-c^{2}}\right)}\right.}=\operatorname{(\operatorname {cos})(x-4)} \\
& \lim _{x \rightarrow c} \frac{-(x+c)}{\sqrt{4-x^{2}}+\sqrt{9-c^{2}}}=-\frac{k c}{x \sqrt{4-c^{2}}}=-\frac{0}{\sqrt{4-c^{2}}}
\end{aligned}
$$

Panel 7
This def. thurs out to aust be that welul for several sethin n ie of in \mathbb{R}^{2} or $\mathbb{R}^{3}+R^{n}$.

$$
\begin{aligned}
& \frac{f(x)-f(c)}{x-c} \in \text { divisia does nod ward! } \\
& \frac{f(x)-f(c)}{x-c} \simeq f^{\prime}(c) \quad \rightarrow f(x) \quad \approx f^{\prime}(c)(x-c)+f(c)
\end{aligned}
$$

Thun f elelinet on $(0,5)$ is ditthel at $x=c$ if \rightarrow constant M sat.

$$
f(x)=f(c)+M(x-c)+\tau(x)
$$ where $\lim _{x \rightarrow c} \frac{r(x)}{\|x-c\|}=0 \quad$ What is $f^{\prime}=M$.

Panel 6
Theorem 6.5.7: Algebra with Derivatives

- Addition Rule: If f and g are differentiable at $x=c$ then $f(x)+g(x)$ is differentiable at $\mathrm{x}=\mathrm{c}$, and

$$
\circ \frac{d}{d x}(f(x)+g(x))-f(x)+g(x)
$$

- Product Rule: If f and g are differentiable at $x=c$ then $f(x) g(x)$ is differentiable at ; " C , and

$$
0 \frac{d}{d x}(f(x) g(x))=f(x) g(x)+f(x) g(x)
$$

- Quotient Rule: If f and g are differentiable at $x=c$, and $g(c) \neq 0$ then then $f(x) / g(x)$ is differentiable at $\mathrm{x}=\mathrm{C}$, and

$$
\frac{d}{d x}(f(x) / g(x))=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

- Chain Rule: If g is differentiable at $x=c$, and f is differentiable at $x=g(c)$ then $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ is differentiable at $\mathrm{x}=\mathrm{c}$, and

$$
-\frac{d}{d \pi} f(g(x))-f(g(x)) g(x)
$$

Panel 8
Ex: Show that $f(x)=\sqrt{9+x}$ in diffiste at $c=0$ using the livers approx. Let. $f^{\prime}(b)=\frac{1}{2}(a+x)^{-1 / 2}$

$$
\begin{aligned}
& \left.f(x) \approx f^{\prime}(c)(x-c)+\mathcal{C}_{c}\right)=\prod_{M}^{\square} x+3 \\
& \left.\sqrt{9+x} z_{2}\right]+\frac{1}{6} x+r(x) \\
& \Rightarrow r(x)=\sqrt{4+x}-(J+i x) \quad \text { Neal } \lim _{x \rightarrow 0} \frac{r(x)}{x}=0 \\
& \frac{\sqrt{4+x}-\left(3+\frac{1}{6} x\right)}{x}(+)=\frac{a+x-\left(3+\frac{1}{6}\right)^{2}}{\left(\sqrt{4+x}+\left(3+\frac{1}{2} x\right)^{2}\right.}=\frac{d+x-9-x-\frac{1}{j} 6^{6}}{x(\Gamma+(1))} \\
& \rightarrow \lim _{x \rightarrow 0}\left(\frac{n(x)}{x}\right)=0
\end{aligned}
$$

Thu: f diffle at $x=c \Rightarrow$ fis cont at $x=C$
conchere is seho $(|x|)$

Ex $f(x)=x \sin \left(\frac{1}{x}\right)$ hus removnlile discont. Is the "enhanced" function diffele?
Sg(x) $-x^{2} \sin \left(\frac{1}{x}\right)$ abso has a remeratle doscont.
is then "enhancult function dittbl?
T/F, It t in diffele, then f^{\prime} in confinans? HN

Panel 10
Panel 10

$$
\begin{aligned}
& L(v)=\left\{\begin{array}{ll}
x \sin \left(\frac{1}{2}\right) & \text { i } x \neq 0 \\
0 & \text { is } x=0
\end{array} \quad \text { is cort } \forall x . \quad, x \neq 0\right. \\
& \text { Sh it difles, Yen ber } x \neq 0 \quad f^{\prime}(x)=\left\{\begin{array}{r}
\sin \left(\frac{1}{x}\right)-\frac{1}{x} \operatorname{cy}\left(\frac{1}{i}\right) \\
(?) \quad i^{x}=0
\end{array}\right. \\
& \text { Is of dithble at } \times 0 \text {. } \\
& \lim _{h \rightarrow 0} \frac{f(c h h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h\left(\sin \left(\frac{1}{h}\right)\right.}{h}=\lim _{h \rightarrow 0} \operatorname{si}\left(\frac{1}{h}\right) d h e
\end{aligned}
$$

