Panel 1
Dot: A set SCR is compact: every sequence
has a cour subsequera ware limit is in A.
ζ
11 > 0 0
Heins - Dotel Theorem.
04 1 0 1 1 1
in M. Compert = closed + 5dd
Part: Take School + Sold lake any sequera Eam JCS.
Part: Take Schred + Sold take any graphere Ear JCS. [cu.) in lebel -> Say Bolzono-Chair stay >> -> C., c in accumplific pt, Schred => CES
c in accumulation fot, Schoud => CES
Take S compact: suppose not ald -> For every N
3 a s.t. la N. Call that {an} → ∞ -> every susseq

Panel 2
concerps to a> Not compact! Decure oo & S.
Suppore not closed. => one accum point outside S.
=> 3 a; will a;->c,c&S
=> Frey subsequence -> C & S
god
2

Panel 3
Q: Find sets A, st. (1) An one closed
(2) An are hested, i.e. An. C An
(3) An = Ø
141 (J 14N X)
[O,n] [O,2)-[O] NOT wester
=> [0, \frac{1}{2}] = [0,1) > [0,1) > [0,1/2] = [0]
[1,1] = (i, i) (in)
[u,w] [1,w) 5 [7,6) 5 [7,6] - (u,w) = 0
3

Panel 4
Thin A. C.R. A. compact and nested, Burchth
Then O P, #0
Proof B; compent on OB; in about + lold on OB, is upon
Pich x; in A; . Know Ex; J c A, . P, is compact
∃ X' -> C, CE A,
But Exilia a Az ilus com subequera lo CEAZ
Next Eximines CAS, how come subseque to CEAS
DCE ASH => CEPA +D gad

Panel 5

Each A_j is compact, hence closed and bounded. Therefore, A is closed and bounded as well, and hence A is compact. Pick an $a_j \in A_j$ for each j.

Then the sequence $\{a_j\}$ is contained in A_j . Since that set is compact, there exists a convergent subsequence $\{a_{j_k}\}$ with limit in A_j .

But that subsequence, except the first number, is also contained in A_2 . Since A_2 is compact, the limit must be contained in A_2 .

Continuing in this fashion, we see that the limit must be contained in every A_j , and hence it is also contained in their intersection A. But then A can not be empty.

Def: A set S = (R is perfect it it is

closed and every point is an accumulation point.

Ex: Find a perfect set (a,5) / (0,1) v (2)

Find a closed set that is not perfect

Find an unbald closed set that is not perfect

Find an unbald closed set that is not perfect.

