Panel 1
Topology
Worked with unabor, which had specific locations on
umber line, They were ordered, could count them etc.
Ex: lacles
Now went to best unaloss as abstract entities forming
piles of stuff sets
=> Topology
Det, A set U cill is open it for every XEVI
there is our E-neighborhood Uz=(x-E, x+E) = U.
If set is closed it its complement is open
D. 10

Panel 2
Ex. (-3,3) - open. Take x = (-3,3) ld &= 1-x (x0-E, x0+6)
[4,2] = (-0,4)v (2,00) = 20 C(-2,3)
(-4, t) neither (x x)
(O16) oper -3
[Ois) down
(-4, 5) is not open, because 5 does not have Eutho
is het closer because - 4 does not have E-what it
(-415)c
R. open RC-D is open so R is open + cleral
Ø open and closed
2

Panel 3
The Every union of open sets is open
Every intersection of closed sets is closed
Every finite intersection of open sets in open Greny finite union of closed sets is closed
Q1: Find intersection of open sets that in net open
0 (m 1.1) = (m 1)
$V(Q^{\prime}, V^{\prime}) = (Q^{\prime})$
Q2: Find a union of closed sets that is not closed
aci fina a major of condo sons mor as my acond
(MW)
(1MM)
3

The Grey open set in R is a countable union of disposet, open intervals!

Panel 5
Det. Say set in IR.
1.) A point XGR is a Soundary point of S
it every wished of x intersects I and I'
2) A poil x & S is an interior point of S
is I s-ubbot contenied in S
3.) A point xes in called isolated it ?
E-nold of x whose intersedin will Sin empty
4.) A point x & S is called accumulation point,
is every used at x contains infinity many
points of S
Ex. (0,4)