Panel 1
Topology
Worked with numbers, whit had specific locations on cumber line. They were arclered. could count them etc.
Ex: $\quad \mid a_{3}-c / e g$
Now cent to rect umbles as ablract entities forming piles of shut sets
\Rightarrow Topology
Def: A set $U \subset \mathbb{R}$ is open if for every $x \in U$ there is an ε-neighborhood $U_{\varepsilon}=(x-\varepsilon, x+\varepsilon) \subset U$. A set is closed it its complement is open

Panel 2
Ex: $(-3,3)$-open: the $x_{0} \in(-3,3)$ at $\varepsilon=\frac{3-x_{1}}{2}\left(x_{0}-\varepsilon_{1}, x_{0}+6\right)$

$$
[4,7]^{c}=\left(-\infty, 4 \left\lvert\, v(7, \infty)=\frac{x_{+1}}{2} \subset(-7,7)\right.\right.
$$

$(-4, r]$ neither

(0,) open
[0, 0) coned
$(-4, r)$ is not open, becanx 5 does nah have E-ubhal is act cloven because - 4 doennot have E-ushad it

$$
(-4 / 5)^{c}
$$

\mathbb{R} : oren $\mathbb{R}^{c}=\varnothing$ is opes so \mathbb{A} is open + cleresed
\varnothing, open and cloned

Panel 3
Thun Eveny miou of open sats is open
Eveng intersectian of clood sets is clored Every bivite inlersection of oper sets in open creyy hivie unich of clored sets in clered Q1: Finet intersection of open rets that in nets open

$$
n\left(0,1+\frac{1}{n}\right)=(0,1]
$$

Q2. Find a unice of cloved sits dat is nut cloved.
(HW)

Panel 4
Thim: "Open sets are boning, cloud rets can le infenkis)
Ex. $\{1,2\}$ clored, $\{1,2\}^{c}=(-\infty, 1) \cup(1,2) \cup(2, \infty)$

$$
\left[1, \frac{1}{2}, \frac{1}{3}, \ldots-\frac{1}{4},-\right]^{c}=(1, \infty) \cup\left(1, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \frac{1}{3}\right) \cup \ldots(-\infty, 0]
$$

$\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}^{c}$ incluchs 0 , but $\underline{\underline{u}}(-\varepsilon, \varepsilon)$.
so $\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\} i$, ust clered

$$
\left\{1, \frac{1}{4}, \frac{1}{3}, \ldots\right\} \cup\{0\} \text { in cloreA }
$$

Thu, Every open set in If is a councable union of dinjoiit, open inlervals!

Panel 5
Det. S any set in \mathbb{R}.
1.) A point $x \in \mathbb{R}$ is a Soundery point of S is every ushd. of x inlersects S and S^{C}
2.) A point $x \in S$ is an inflerior poust of S is \mathcal{A}-ubhed conferied in S
3.) A poust $x \in J$ is callad isolated it \exists E-nshed of x whose inlersectin will Sis emply
4.) A point $x \in S$ in calleed accumnlabion point, is every wheld of x conkinos intinilly many points of S

$$
\text { Ex. }(0,4)
$$

