Math 2511 Homework on Fundamental Theorem of Line Integration

1. State the Fundamental Theorem of Line Integration
2. Use the above theorem to evaluate the following work integrals
a. $\int_{C} x^{2}+y^{2} d x+2 x y d y, C$ some curve from $(0,0)$ to $(1,2)$
b. $\int_{C} \vec{F} \cdot d \vec{r}$, where $F(x, y)=<e^{x} \sin (y), e^{x} \cos (y)>$ and C the curve given by $r(t)=<1,2>+t<4,3>, 0 \leq t \leq 1$
c. $\int_{C}\left(y z+2 x z^{3}\right) d x+(x z-z) d y+\left(x y+3 x^{2} z^{2}-y\right) d z, \mathrm{C}$ is the straight line from $(-1,-2,-3)$ to $(3,2,1)$
3. Use any method you like to find the following work integrals
a. $\int_{C}\left(x^{2}+y^{3}\right) d x+3 x y d y$, where C is a straight line from $(-1,0)$ to $(2,2)$
b. $\quad \int_{C} \sin (x) \cos (y) d x+\cos (x) \sin (y) d y$, where C is the line from $(-1,1)$ to $(1,-1)$ followed by a line from $(1,-1)$ to $(2,2)$
c. $\int_{C} y z d x+x z d y+x y d z$ where C is the closed circle starting and ending at $(1,0,0)$.
4. Estimate the signs of the following work integrals:

