Summary 21: Polar Coordinates

Changing Coordinates to Polar Coordinates: To change from rectangular coordinates to polar coordinates:

1. Substitute $\boldsymbol{x}=\boldsymbol{r} \boldsymbol{\operatorname { c o s }}(\theta)$ and $\boldsymbol{y}=\boldsymbol{r} \sin (\theta)$
2. Change $d x d y$ or $d y d x$ to $\boldsymbol{r} \boldsymbol{d} \boldsymbol{r} \boldsymbol{d} \boldsymbol{\theta}$ (note the extra r)
3. Find the bounds for the radius \boldsymbol{r} and angle $\boldsymbol{\theta}$ so that the domain D is covered exactly once
4. Use the fact that $x^{2}+y^{2}=r^{2} \cos ^{2}(\theta)+r^{2} \sin ^{2}(x)=r^{2}$ to simplify the integrand if possible
5. Integrate as usual, treat r and θ as just two ordinary variables

Try this technique in problems that involve "round" domain such as circles or disks, and/or complicated integrands involving $x^{2}+y^{2}$ terms

Compute $\iint_{D} 2 x^{2}+2 y^{2} d A$, where D is the set in the first quadrant outside the circle $x^{2}+y^{2}=1$ but inside $x^{2}+y^{2}=9$ We clearly have "round" domains here as well as an integrand involving $x^{2}+y^{2}$ so polar coordinates seem advisable. Looking at the picture of the domain, we see that the angle goes between 0 and $\frac{\pi}{2}$ radians (to stay in the first quadrant) and the radius is between 1 and 3 . Thus:
$\iint_{D} 2 x^{2}+2 y^{2} d A=$
$=\int_{0}^{\frac{\pi}{2}} \int_{1}^{3} 2 r^{2}\left(\cos ^{2}(\theta)+\sin ^{2}(\theta)\right) \boldsymbol{r} d r d \theta=$
$=\int_{0}^{\frac{\pi}{2}} \int_{1}^{3} 2 r^{3} d r d \theta=\frac{\pi}{2}\left(\frac{2}{4} 3^{4}-\frac{2}{4}\right)=\frac{80 \pi}{4}=$
$=20 \pi$

$$
\operatorname{area}(\text { Circle })=\iint_{D} 1 d A=\int_{0}^{2 \pi} \int_{0}^{R} r d r d \theta=\frac{2 \pi R^{2}}{2}=\pi R^{2}
$$

Volume of a Sphere with radius R:

$$
\begin{aligned}
& \operatorname{vol}(\text { Sphere })=2 \iint_{\text {circle, radius } R} \sqrt{R^{2}-x^{2}-y^{2}} d A= \\
& =2 \int_{0}^{2 \pi} \int_{0}^{R} \sqrt{R^{2}-r^{2}} \boldsymbol{r} d r d \theta= \\
& =\left.2 \cdot 2 \pi \cdot \frac{2}{3} \cdot\left(-\frac{1}{2}\right)\left(R^{2}-r^{2}\right)^{\frac{3}{2}}\right|_{r=0} ^{r=R}= \\
& =-\frac{4}{3} \pi\left(0-\left(R^{2}\right)^{\frac{3}{2}}\right)= \\
& =\frac{4}{3} \pi R^{3}
\end{aligned}
$$

