Summary 18: Absolute Extrema

Theorem : A continuous function on a closed, bounded set in \mathbb{R}^n has an	
absolute max and an absolute min. Moreover, it can occur only at a	
critical point or on a boundary point.	
How to find absolute extrema	Find absolute extrema for
If f is a continuous function defined on closed and bounded set D:	$f(x, y) = x^2 + y^2 - 4xy + 1$
1. Find the gradient ∇f	on the set [-1, 2] x [0,3], i.e. for $-1 \le$
2. Solve system of equations $\nabla f = < 0, 0 > $ to find critical points	$x \le 2$ and $0 \le y \le 3$
3. Find all critical points along the boundary of D	$f_x = 2x - 4y = 0$ so that $x = 2y$
4. Create a table evaluating f at all points found in (2) and (3) as	$f_y = 2y - 4x = 0$ so that $2y - 8y = 0$
well as any endpoints.	Critical point inside D: (0,0)
Then	Checking the boundary:
a) The largest overall value is the absolute max	$x = -1: f(-1, y) = y^2 + 4y + 2$
b) The smallest overall value is the absolute min	f'(y) = 2y + 4 = 0
	Critical point $y = -2$
	$x = 2: f(2, y) = y^2 - 8y + 5$
	f'(y) = 2y - 8 = 0
	Critical point $y = 4$
	$y = 0: f(x, 0) = x^2 + 1$
	f'(y) = 2x = 0
	Critical point $x = 0$
le, elle	$y = 3: f(x, 3) = x^2 - 12x + 1$
-1 0007	f'(y) = 2x - 12 = 0
°	Critical point x = 6
	(\mathbf{x},\mathbf{y}) $f(\mathbf{x},\mathbf{y})$
2	
20	(-1 -2) outside domain
	(2,4) outside domain
	(3,6) outside domain
	(-1,0) 2
	(2,0) 5
	(-1, 3) 23
	(2,3) -10
	Abs. max is 23, at (-1, 3)
V	Abs. min is-10 at (2, 3)
U	