Summary 10. Partial Derivatives	
Directional Derivative $D_u(f)$ of a function $f(x, y)$ in the direction of	
the unit vector $u = \langle a, b \rangle$ is defined as	
$D_u(f) = \lim_{h \to 0} \frac{f(x + ha, y + bh) - f(x, y)}{h}$ How to find $D_u(f)$: We have $D_u(f) = \langle f_x, f_y \rangle \langle a, b \rangle = af_x + bf_y$	
$h \to 0$ h	
How to find $D_u(f)$: We have $D_u(f) = \langle f_x, f_y \rangle \langle a, b \rangle = af_x + bf_y$	Find directional derivative of $f(x, y) =$
	$\frac{x}{y^2-1}$ in the direction $u = <\frac{1}{2}, \frac{\sqrt{3}}{2} >$ at the
	point (1,0):
	$\nabla f = < \frac{1}{y^2 - 1}, -\frac{2xy}{(y^2 - 1)^2} >$
	so that $\nabla f(1,0) = < -1,0 >$. Then
	$D_u(f) = <-1,0> < \frac{1}{2}, \frac{\sqrt{3}}{2}> = -\frac{1}{2}$
Gradient of <i>f</i> : The gradient of a function $f(x, y, z)$ is the vector of all partials $grad(f) = \nabla f = \langle f_x, f_y, f_z \rangle$. It has a number of properties: 1. ∇f applies to a function and results in a vector	Suppose $f(x, y) = 4 x^2 - y^3$ describes a small hill. You are standing at P(2,1). In which direction should you walk to go up
2. ∇f is perpendicular to the level curves of f	the most, and what is the max increase:
3. ∇f points in the direction of largest increase, and $ \nabla f $ is the	$\nabla f = \langle 8x, -3y^2 \rangle$. Thus
largest increase	$\nabla f(2,1) = < 16, -3 > \text{and}$
4. $D_u(f) = \nabla f \cdot u, u$ a unit vector	$ \nabla f(2,1) = < 16, -3 > = \sqrt{265}.$
	So, steepest increase is $\sqrt{265}$ in the
	direction of $< 16, -3 >$
Partial Differential Equation: A PDE is an equation involving a function	Show that $f(x, y) = sin(y) e^x$ satisfies
and some or all of its partials.	the Laplacian PDE
	$\partial^2 u \partial^2 u$
	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = u_{xx} + u_{yy} = 0$
	$f_x = \sin(y) e^x$ and $f_{xx} = \sin(y) e^x$
	$f_y = \cos(y) e^x$ and $f_{yy} = -\sin(y) e^x$
	Thus: $f_{xx} + f_{yy} = 0$

Summary 16: Partial Derivatives