Summary 16: Partial Derivatives

Directional Derivative $D_{u}(f)$ of a function $f(x, y)$ in the direction of the unit vector $u=\langle a, b\rangle$ is defined as

$$
D_{u}(f)=\lim _{h \rightarrow 0} \frac{f(x+h a, y+b h)-f(x, y)}{h}
$$

How to find $\boldsymbol{D}_{\boldsymbol{u}}(\boldsymbol{f})$: We have $D_{u}(f)=\left\langle f_{x}, f_{y}\right\rangle\langle a, b\rangle=a f_{x}+b f_{y} \quad$ Find directional derivative of $f(x, y)=$
$\frac{x}{y^{2}-1}$ in the direction $u=<\frac{1}{2}, \frac{\sqrt{3}}{2}>$ at the point (1,0):

$$
\nabla f=<\frac{1}{\mathrm{y}^{2}-1},-\frac{2 \mathrm{xy}}{\left(\mathrm{y}^{2}-1\right)^{2}}>
$$

so that $\nabla f(1,0)=<-1,0>$. Then
$D_{u}(f)=\langle-1,0\rangle \cdot\left\langle\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle=-\frac{1}{2}$
Gradient of \boldsymbol{f} : The gradient of a function $f(x, y, z)$ is the vector of all partials $\operatorname{grad}(f)=\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$. It has a number of properties:

1. ∇f applies to a function and results in a vector
2. ∇f is perpendicular to the level curves of f
3. ∇f points in the direction of largest increase, and $\|\nabla f\|$ is the largest increase
4. $D_{u}(f)=\nabla f \cdot u, u$ a unit vector

Partial Differential Equation: A PDE is an equation involving a function and some or all of its partials. Suppose $f(x, y)=4 x^{2}-y^{3}$ describes a small hill. You are standing at $P(2,1)$. In which direction should you walk to go up the most, and what is the max increase:
$\nabla f=<8 x,-3 y^{2}>$. Thus
$\nabla f(2,1)=<16,-3>$ and
$||\nabla f(2,1)||=\|<16,-3>\|=\sqrt{265}$.
So, steepest increase is $\sqrt{265}$ in the direction of $\langle 16,-3\rangle$
Show that $f(x, y)=\sin (y) e^{x}$ satisfies the Laplacian PDE

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=u_{x x}+u_{y y}=0
$$

$$
f_{x}=\sin (y) e^{x} \text { and } f_{x x}=\sin (y) e^{x}
$$

$f_{y}=\cos (y) e^{x}$ and $f_{y y}=-\sin (y) e^{x}$
Thus: $f_{x x}+f_{y y}=0$

