Partials: For $f(x, y)$ define partial derivatives: $\frac{\partial f}{\partial x} = f_x = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$ $\frac{\partial f}{\partial y} = f_y = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}$	Use definition of partial derivative to find f_x for $f(x, y) = x^2y - 3xy$ $f_x = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} =$ $= \lim_{h \to 0} \frac{((x+h)^2y - 3(x+h)y) - (x^2y - 3xy)}{h} =$ $= \lim_{h \to 0} \frac{x^2y + 2xhy + h^2y - 3xy - 3hy - x^2y + 3xy}{h} =$ $= \lim_{h \to 0} \frac{2xyh + h^2y - 3hy}{h} =$ $= 2xy - 3y$ Find all partials for $f(x, y, z) =$
How to find Partials: To really find the partial derivative with respect to one variable, you consider all other variables as constant and take derivatives as usual.	xysin(xz): $f_x(x, y, z) = ysin(xz) + xycos(xz)z$ $f_y(x, y, z) = xsin(xz)$ $f_z(x, y, z) = xycos(xz)x$
Higher order Partials: A partial derivative is again a function of several variables, hence it again has partials. A function of two variables has 2 partials f_x , f_y , 4 2 nd order partials f_{xx} , f_{xy} , f_{yx} , f_{yy} , 8 3 rd order partials, etc. For "most" functions the order of taking partials does not matter, i.e. $f_{xy} = f_{yx}$ (this is called Clairaut's Theorem) We sometimes write $f_{xx} = \frac{\partial^2}{\partial x^{2'}}$, $f_{xy} = \frac{\partial^2}{\partial x \partial y'}$, etc.	Find all 2 nd order partials for $f(x, y) = \frac{y}{x}$: $f_x = -\frac{y}{x^2}$ and $f_y = \frac{1}{x}$. Therefore $f_{xx} = \frac{\partial}{\partial x} \left(-\frac{y}{x^2} \right) = \frac{2y}{x^3}$ $f_{xy} = \frac{\partial}{\partial y} \left(-\frac{y}{x^2} \right) = -\frac{1}{x^2}$ $f_{yx} = \frac{\partial}{\partial x} \left(\frac{1}{x} \right) = -\frac{1}{x^2}$ $f_{yy} = \frac{\partial}{\partial y} \left(\frac{1}{x} \right) = 0$
Partials graphically: f_x and f_y give the slope of f at (x, y) in the x and y direction, respectively. They can be used to define the tangent plane $z = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0, y_0)$	Tangent plane to $f(x, y) = x^2 + 2y^2$ at (3,1): $f_x = 2x \text{ so } f_x(3,1) = 6$ $f_y = 4y \text{ so } f_y(3,1) = 4$ Since $f(3,1) = 11$, tangent plane is:
Mathematica's Plot3D function can be used to visualize the tangent plane to a function f at a point (x_0, y_0)	$z = 6(x - 3) + 4(y - 1) + 11$ Plot3D[{x^2+2y^2, 6(x-3)+4(y-1)+11}, {x, -4, 4}, {y, -4, 4}]

Summary 15: Partial Derivatives