Summary 15: Partial Derivatives

Partials: For $f(x, y)$ define partial derivatives:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=f_{x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& \frac{\partial f}{\partial y}=f_{y}=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
\end{aligned}
$$

Use definition of partial derivative to
find f_{x} for $f(x, y)=x^{2} y-3 x y$

$$
\begin{aligned}
f_{x} & =\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}= \\
& =\lim _{h \rightarrow 0} \frac{\left((x+h)^{2} y-3(x+h) y\right)-\left(x^{2} y-3 x y\right)}{h}= \\
& =\lim _{h \rightarrow 0} \frac{x^{2} y+2 x h y+h^{2} y-3 x y-3 h y-x^{2} y+3 x y}{h}= \\
& =\lim _{h \rightarrow 0} \frac{2 x y h+h^{2} y-3 h y}{h}= \\
& =2 x y-3 y
\end{aligned}
$$

How to find Partials: To really find the partial derivative with respect to one variable, you consider all other variables as constant and take derivatives as usual.
Higher order Partials: A partial derivative is again a function of several variables, hence it again has partials. A function of two variables has 2 partials $f_{x}, f_{y}, 42^{\text {nd }}$ order partials $f_{x x}, f_{x y}, f_{y x}, f_{y y}, 83^{\text {rd }}$ order partials, etc.
For "most" functions the order of taking partials does not matter, i.e. $f_{x y}=f_{y x}$ (this is called Clairaut's Theorem)
We sometimes write $f_{x x}=\frac{\partial^{2}}{\partial x^{2}}, f_{x y}=\frac{\partial^{2}}{\partial x \partial y^{\prime}}$, etc.
Partials graphically: f_{x} and f_{y} give the slope of f at (x, y) in the x and y direction, respectively. They can be used to define the tangent plane

$$
z=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

Mathematica's Plot3D function can be used to visualize the tangent plane to a function f at a point $\left(x_{0}, y_{0}\right)$

Find all partials for $f(x, y, z)=$ $x y \sin (x z)$:
$f_{x}(x, y, z)=y \sin (x z)+x y \cos (x z) z$
$f_{y}(x, y, z)=x \sin (x z)$
$f_{z}(x, y, z)=x y \cos (x z) x$
Find all $2^{\text {nd }}$ order partials for $f(x, y)=\frac{y}{x}$.
$f_{x}=-\frac{y}{x^{2}}$ and $f_{y}=\frac{1}{x}$. Therefore
$f_{x x}=\frac{\partial}{\partial x}\left(-\frac{y}{x^{2}}\right)=\frac{2 y}{x^{3}}$
$f_{x y}=\frac{\partial}{\partial y}\left(-\frac{y}{x^{2}}\right)=-\frac{1}{x^{2}}$
$f_{y x}=\frac{\partial}{\partial x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}$
$f_{y y}=\frac{\partial}{\partial y}\left(\frac{1}{x}\right)=0$
Tangent plane to $f(x, y)=x^{2}+2 y^{2} a t$ $(3,1)$:
$f_{x}=2 x$ so $f_{x}(3,1)=6$
$f_{y}=4 y$ so $f_{y}(3,1)=4$
Since $f(3,1)=11$, tangent plane is:

$$
z=6(x-3)+4(y-1)+11
$$

Plot3D[\{ $\left.x^{\wedge} 2+2 y^{\wedge} 2,6(x-3)+4(y-1)+11\right\}$, $\{x,-4,4\},\{y,-4,4\}]$

