Summary 13: Functions from R^2 to R and Limits

Function: The function f associates to every point (x, y) in a set $D \subset$	Plot the surface $z = 2x^2 + 3y^2$ and
R^2 a number $z = f(x, y)$. The graph of such a function is a <i>surface</i> in	draw its level curves.
R^3 and is best drawn using Mathematica's Plot3D function.	We could use
	Mathematica, but let's
Level curves: The level curves for a function $f(x, y)$ are curves of	do it manually: contour
constant height $f(x, y) = c$. They are best drawn using Mathematica's	plots $c = 2x^2 + 3x^2$ for
ContourPlot function, and they resemble a topographic map.	different constants c.
	Each such curve is an
Limit: $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$ means that given any $\varepsilon > 0$ there exists	ellipse, so that the
a number $\delta > 0$ such that whenever $ (x, y) - (x_0, y_0) < \delta$ we have	contour plot is on the 📲 💙 🚺
that $ f(x,y) - L < \epsilon$	left, while the actual
	surface is a paraboloid:
How to find limits: First try the obvious: if substitution works, that is	22
the answer. If you get 0/0 you try to find different approach paths such	Find $\lim_{(x,y)\to(0,0)} \frac{3xy^2}{x^3+4y^2}$
that you get different answers. Typically try:	1. Subst. $x = 0, y = 0: \frac{0}{0}$ (more work)
• $x = 0, y \rightarrow 0$ (along y-axis)	
• $y = 0, x \rightarrow 0$ (along x-axis)	2. $x = 0, y \to 0: \lim_{y \to 0} \frac{0}{4y^2} = 0$
• $x = y, x \rightarrow 0$ (along major diagonal)	3. $y = 0, x \to 0: \lim_{x \to 0} \frac{0}{x^2} = 0$
• $y = x^2, x \to 0$ (along parabola)	Same limits, tells us nothing
• $x = y^2, y \to 0$ (along parabola)	4. $x = y, x \to 0: \lim_{x \to 0} \frac{3x^3}{x^{3} + 4^2} = \frac{3}{5}$
If <i>any two</i> answers <i>differ</i> from one another the <i>limit does not exists</i> . If	<i>N</i> 5
all agree, perhaps the limit might exist (although not necessarily so). Try	Different, so original limit d.n.e.
to prove it using the definition above or try other approach paths.	