Lines	
Parametric equation of a line though point P with <i>directional vector</i> \vec{v} is:	
$l(t) = P_0 + t \vec{v} = \langle p_1, p_2, p_3 \rangle + t \langle v_1, v_2, v_3 \rangle =$	l(t) = <1,2,3 > +t < 3,0,1 >=
$= \langle p_1 + tv_1, p_2 + tv_2, p_3 + tv_3 \rangle$	= < 1 + 3t, 2, 3 + t >
Planes	
The equation of a plane with normal vector $\vec{n} = \langle a, b, c \rangle$ through the	
point $P(x_0, y_0, z_0)$ is:	2(x+1) - 3(y-1) + (z-3) = 0
$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$	or equivalently
or equivalently	2x + 2 - 3y + 3 + z - 3 = 0
ax + by + cz + d = 0	or $2x - 3y + z + 2 = 0$

Summary 8: Lines, Planes, and Distances

Distances

Distance between two points $P(x_0, y_0, z_0)$ and $Q(x_1, y_1, z_1)$:	
$d = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2}$	
Distance between point $P(x_0, y_0, z_0)$ and plane $ax + by + cz + d = 0$:	Distance between $P(1,2,3)$ and $3x +$
Find any point Q on the plane. Then	4y - 5z = 6: Take $Q(2,0,0)$. Then:
$d = \left \left proj_{\vec{n}}(\vec{PQ}) \right \right = \frac{ \vec{n} \cdot \vec{PQ} }{ \vec{n} } \text{ or } d = \frac{ a x_0 + b y_0 + c z_0 + d }{\sqrt{a^2 + b^2 + c^2}}$	$d = \frac{\langle 3,4,-5 \rangle \cdot \langle 1,-2,-3 \rangle}{\sqrt{3^2 + 4^2 + (-5)^2}} = \frac{10}{\sqrt{50}} \text{ or }$
	$d = \frac{ 3*1+4*2-5*3-6 }{\sqrt{50}} = \frac{10}{\sqrt{50}}$
Distance between line and plane:	Distance between $x + y - 2z = 1$ and
First, check if they are parallel. If not, distance is zero. Otherwise	<i>l</i> (<i>t</i>) =< 0,0,3 > + <i>t</i> < 4,2,3 >: We
pick any point on the line and use formula above	have $< 1, 1, -2 > < 4, 2, 3 > = 0$ so they
	are parallel. Pick $P(0,0,3)$ on the line
	and $Q(1,0,0)$ on the plane. Then:
	$d = \frac{\langle 1, 1, -2 \rangle \cdot \langle 1, 0, -3 \rangle}{\sqrt{1^2 + 1^2 + (-2)^2}} = \frac{7}{\sqrt{6}}$ or
	$d = \frac{ 0+0-6-1 }{\sqrt{6}} = \frac{7}{\sqrt{6}}$
Distance between two planes:	Distance between planes $x + y - z = 1$
First, check if they are parallel. If not, distance is zero. Otherwise	and $3x - 3y + 3z = 42$: planes are not
pick any point on the second plane and use formula above	parallel so distance is zero.
Distance between point Q and line:	
If 3D problem: $d = \frac{ \vec{v} \times \vec{PQ} }{ \vec{v} }$. If 2D problem: $d = \frac{ ax_0 + by_0 + d }{\sqrt{a^2 + b^2}}$	No examples necessary, these formulas
Distance between two lines $l_1(t) = P + t\vec{v}_1$ and $l_2(t) = Q + t\vec{v}_2$:	are rarely used
$d = \left \left proj_{v_1 \times v_2}(PQ) \right \right = \frac{\left (v_1 \times v_2) \cdot \overrightarrow{PQ} \right }{\left \left v_1 \times v_2 \right \right }$	

Note: the "take-away" formula you *really* need to know is that of the distance between a point and a plane or, consequently, between a line and a (parallel) plane or between two (parallel) planes.